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BACKGROUND: Despite its high prevalence and major prognostic implications, coronary microvascular disease
(CMD) is frequently underdiagnosed owing to the complexity and invasiveness of current diagnostic procedures.

AIMS: This study aimed to introduce and validate the usefulness of a non-invasive index of microcirculatory
resistance (IMR) derived from coronary computed tomography angiography (CCTA), called IMR ., for accurate
diagnosis of CMD.

METHODS: This retrospective cohort study comprised consecutive patients referred for invasive coronary functional
assessments who underwent CCTA within the 30 days preceding an invasive evaluation between January 2022 and
March 2024. IMR . was calculated by blinded evaluators and compared against invasively determined IMR, with
IMR values 225 indicating CMD, to assess its diagnostic performance.

RESULTS: A total of 176 patients (216 vessels) were included in the analysis. IMR . showed good correlation
with invasively measured IMR, both at the vessel level (r=0.71, 95% confidence interval [CI]: 0.62-0.76; p<0.001)
and the patient level (r=0.72, 95% CI: 0.64-0.78; p<0.001). At the vessel level, diagnostic accuracy, sensitivity,
specificity, and area under the curve were 81.9%, 80.8%, 82.5%, and 0.82, respectively; corresponding values at
the patient level were 80.7%, 81.5%, 80.2%, and 0.81. In patients with non-obstructive coronary artery disease
defined by CCTA stenosis <50%, coronary angiogram stenosis <50%, or fractional flow reserve >0.8, IMR_,
reduced underdiagnosis rates from 38.8%, 35.3%, and 36.3% to 4.5%, 5.9%, and 5.6 %, respectively.
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CONCLUSIONS: IMR _; serves as a valuable complement to current diagnostic approaches, addressing their limitations
and offering a promising alternative for the diagnosis of CMD, with the potential to significantly reduce misdiagnosis
rates.
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oronary microvascular disease (CMD) represents
‘ a clinical condition of myocardial ischaemia resulting

from structural and/or functional changes in the
coronary microcirculation!. Since the pioneering report
by Likoff et al on myocardial ischaemia caused by non-
obstructive coronary artery disease (CAD)?, the diagnostic
challenges of CMD have become increasingly recognised.
Recent studies have demonstrated that up to 60.7% of
patients with positive stress tests but non-obstructive CAD
have underlying CMD when assessed by the invasive index
of microcirculatory resistance (IMR)?, highlighting a critical
gap in current diagnostic approaches.

Unlike obstructive CAD, which is readily identified
through anatomical imaging, CMD remains underdiagnosed
because of the lack of reliable non-invasive tools*. Non-
invasive functional tests, including stress echocardiography,
positron emission tomography (PET), and cardiac magnetic
resonance imaging (MRI), face significant limitations in
the comprehensive assessment of coronary microvascular
disease’. Although PET provides quantitative measurements
of myocardial blood flow, its widespread use is hindered
by high cost and limited availability. Cardiac MRI, despite
offering high spatial resolution, cannot definitively exclude the
presence of multivessel epicardial disease. Furthermore, stress
echocardiography exhibits operator-dependent variability
when assessing coronary flow velocity reserve, which may
affect the reproducibility and accuracy of the results.

Although IMR measurements based on
thermodilution techniques can effectively diagnose CMD®%,
their clinical adoption remains limited by procedural risks,
costs, and the need for hyperaemic agents. This diagnostic
dilemma highlights the urgent need for accurate, non-invasive
alternatives to assess coronary microvascular function.

Coronary computed tomography angiography (CCTA)
is increasingly recognised for its potential to evaluate
microvascular dysfunction through combined anatomical
and functional assessment. Recent evidence shows that
structural CMD is associated with a 40% reduction in
epicardial lumen volume compared to controls (p<0.001),
with strong correlation to invasive microvascular resistance
measurements (r=-0.59) and good diagnostic performance
(area under the curve [AUC] 0.79)°. Significant progress has
also been made in applying computational fluid dynamics
(CFD) to non-invasive physiological assessment of the
coronary circulation, further supporting the feasibility of this
integrated approach!'®!2, Building on these advancements,
we propose an optimised CCTA-based IMR (IMR_,)
measurement method for microvascular evaluation using
standard CCTA technology. This approach addresses key
limitations of current diagnostic strategies by enabling
comprehensive coronary assessment within a single widely
available imaging modality.

invasive

‘ Editorial, see page e11 ‘

IMR,; for non-invasive CMD assessment

Impact on daily practice

This study addresses the unmet need for a reliable, non-
invasive diagnostic tool for coronary microvascular
disease (CMD) by establishing the clinical utility of
a coronary computed tomography angiography-based
index of microcirculatory resistance through advanced
image-reconstruction technology. The method’s simplicity
and diagnostic accuracy enhance early CMD detection
rates while reducing misdiagnosis, enabling tailored
microvascular-targeted  therapies. This advancement
optimises patient outcomes and refines CMD management
strategies by integrating seamlessly into
cardiovascular imaging workflows.

routine

Methods
STUDY DESIGN AND POPULATION
The study population consisted of consecutive patients
retrospectively selected from an academic medical centre
between 1 January 2022 and 31 March 2024. The study
received ethical approval from the medical ethics review
committee (approval number: B KY2024173) and was
conducted following the principles of the Declaration of
Helsinki. Informed consent was waived by the institutional
review board for this retrospective of fully
anonymised clinical data, which posed no risk to participants.
Patients who met both of the following criteria were
included: (1) successful completion of invasive intracoronary
functional assessment for suspected myocardial ischaemia, and
(2) availability of CCTA imaging performed within 30 days
preceding the invasive procedure. Patients were excluded if
they had (1) acute myocardial infarction, (2) incomplete or
poor-quality image data, or (3) a history of previous coronary
stent implantation or coronary artery bypass grafting.

analysis

CCTA IMAGING ACQUISITION

The CCTA protocol adhered to the Society of Cardiovascular
Computed Tomography 2021 guidelines!?, using retrospective
gating tailored to patient-specific factors such as weight and
heart rate/rhythm (voltage 80-120 kV; current 100-350 mA).
Imaging covered the coronary arteries, left ventricle, and
proximal ascending aorta, achieving optimal resolution and
speed with a 0.25 s gantry rotation and 0.6 mm collimation.
High-concentration iodine contrast (50-55 mL; 350-
370 mg I/mL) was injected at 5.5-6.0 mL/s, optimised for
peak enhancement. Slice thickness was set to 0.6 mm; the
Bv435 kernel and Advanced Modeled Iterative Reconstruction
(ADMIRE [Siemens Healthineers]) algorithm were used for
noise reduction and artefact minimisation, respectively.
CCTA was performed using a second-generation dual-source
computed tomography (CT) system (SOMATOM Definition
Flash [Siemens Healthineers]).

Abbreviations

CAD  coronary artery disease CMD  coronary microvascular disease IMR index of microcirculatory resistance
CCTA coronary computed tomography FFR  fractional flow reserve IMR,, CCTA-based index of microcirculatory
angiography resistance
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INTRACORONARY FUNCTIONAL ASSESSMENT

Coronary angiography was performed using Innova IGS §
(GE HealthCare). Intracoronary functional measurements
were obtained using a non-side hole catheter (6-7 Fr) and
a PressureWire X Guidewire (C12009 [Abbott Medical])
equipped with a pressure and temperature sensor, along with
a RadiAnalyzer Xpress (St. Jude Medical). The procedures
were conducted using established protocols'.

Before the functional test, 50-200 pg of nitroglycerine
was injected. Resting and hyperaemic curves were obtained
using three 3 mL saline injections; if the transit time varied
by >30%, additional injections were administered until
stable measurements were obtained. Maximal hyperaemia
was maintained by the continuous infusion of adenosine
triphosphate (140-180 pg/kg/min) via a peripheral vein, with
simultaneous pressure monitoring. The fractional flow reserve
(FFR) was determined as the ratio of distal coronary pressure
to aortic pressure during hyperaemia. Coronary flow reserve
(CFR) was calculated as the ratio of the mean transit time
(Tmn) at rest to the mean transit time during hyperaemia.
The IMR was determined as the product of distal coronary
pressure and the hyperaemic mean transit time. An FFR <0.80,
a CFR <2.0, and an IMR >235 were considered abnormal®s.
When FFR was <0.80, the IMR values were corrected using
Yong’s formula'®.

ESTIMATION OF IMR_, BASED ON CCTA

The IMR ., calculation method was developed by the Health
Information Intelligent Computing Laboratory at the School
of Biomedical Engineering, Sun Yat-sen University, Shenzhen,
China (Figure 1, Supplementary Figure 1, Supplementary
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Figure 2). The lab received only CCTA and clinical data without
the results of invasive measurements. The lab segmented and
reconstructed the coronary arteries, while the clinical centre
marked the positions on the reconstructed model based on
invasive measurements from coronary angiography.

This method estimates hyperaemic coronary blood flow
(CBF) directly from vascular deformation extracted from
multiphase CCTA data. Specifically, vascular deformations
for each segment were automatically extracted, and inverse
problem-solving techniques were applied to implicitly derive
CBE. These techniques were based on physical constraints
governing the relationship between vascular deformation
and coronary blood flow. Segment-specific constraints were
enforced, enabling individualised estimation of CBF by
ensuring appropriate application of constraints on vascular
deformation within each segment.

The estimated hyperaemic CBF served as outlet boundary
conditions for subsequent CFD simulations. CFD simulations
were then performed on patient-specific coronary artery
models, generating pressure and velocity fields. IMR ., values
were calculated from these simulation results. In our prior
study, we also systematically evaluated the impact of variations
in outlet boundary conditions on IMR ., computation'’.

The Tmn prediction and flow estimation algorithm was
developed and validated in our previous study, using an
independent derivation cohort!. In the present study, we
applied this established algorithm to a new and independent
external validation cohort. The estimated flow was used as
the boundary condition for IMR_,, calculation. Analysis time
was <30 min/case. More details are provided in Supplementary
Appendix 1722,
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0.20 Tag ™
/ st *’#4 15
Q,Z// !

N\, 17
( 1098
3 Outflow: |
1-18 /

(\11
12

o
o

Lumen area (cm?)
=
S

/,\54
r—TTT 7T 7T T T T 6 18
0 10 20 30 40 50 60 70 80 90 100 ) 2 1 0
. Velocity (ml/s) mmm— B |
Cardiac phase (%)
G Boundary conditions H MR computation

Pressure
(mmHg)

IBU

1

Inlet: mean
aortic
pressure

IMR: 42.3

IMR,: 283 [

\ Mmas
N IMR: 246

hyperaemic
outflow

IMR,, =Pd x Trmn

Figure 1. Overview of the workflow of the proposed IMR ., model. A) Input images of the IMR .. model. B) Segmentation
of the multiphase CCTA image. C) Extraction of vascular deformation from the cross-sectional area. D) Coronary blood
flow estimation based on vascular deformation. E) 3D model reconstruction of the diastolic coronary artery. F) Mesh
generation of the 3D model. G) The setting of inlet and outlet boundary conditions in the CED simulation. H) The results
of IMR ., computation. 3D: three-dimensional; CCTA: coronary computed tomography angiography; CFD: computational
fluid dynamics; IMR: index of microcirculatory resistance; IMR _: CCTA-based IMR; Pd: distal pressure; Tmn: mean

transit time
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STATISTICAL ANALYSIS

Shapiro-Wilk and Levene tests were used to assess the
normality and homogeneity of variance in the dataset.
Continuous variables are presented as the median and
interquartile range (first quartile, third quartile). Categorical
variables are presented as frequencies and percentages.
Pearson and Spearman correlation coefficients evaluated
the relationship between IMR_, and invasive IMR, while
Bland-Altman analysis assessed agreement. Passing-Bablok
regression quantified systematic bias, with the cumulative
sum (CUSUM) control chart test confirming linearity.
Diagnostic performance was analysed using
operating characteristic curves, with accuracy, sensitivity,
specificity, positive predictive value, and negative predictive
value calculated at patient and vessel levels. Decision curve
analysis evaluated clinical utility by comparing the net benefit
across risk thresholds. A Sankey diagram was generated to
illustrate diagnostic agreement patterns. McNemar’s test was
used to compare classification differences, and intrapatient
vessel variability was assessed using generalised estimating
equations. At the patient level, the highest IMR or IMR
value was used for analysis in cases of multiple vessel
measurements. Statistical significance was set at p<0.05
(two-tailed test). Analyses were performed using R software,
version 4.3.2 (R Foundation for Statistical Computing) and
MedCalc software, version 20.215 (MedCalc).

receiver

Results

BASELINE CLINICAL CHARACTERISTICS

The study reviewed 324 eligible cases, with 196 having
complete examination records. Among these, 20 cases were
excluded because of having either incomplete datasets or
suboptimal image quality. Consequently, the final analytical
sample comprised 176 cases (representing 216 vessels), which
were subsequently submitted to the core laboratory for rigorous
diagnostic efficacy validation (Supplementary Figure 3).

Table 1 presents the baseline characteristics of the
patients (average patient age 61.2+8.8 years; males 65.3%).
The median interval between CCTA and invasive IMR
measurements was 5 days (interquartile range 4-9 days), with
no adverse events occurring between the two examinations.

Supplementary Table 1 presents the distribution of
vessels assessed per patient. Among the 176 patients, only
35 (19.9%) underwent IMR measurements in two or three
vessels. Of these, 57.1% showed concordant IMR values
(either all were above and equal to 25, or all were below
25), while 42.9% demonstrated discordant measurements,
revealing myocardial perfusion heterogeneity. Notably,
complete three-vessel assessment was performed in just five
patients, with three showing consistent IMR values and
two exhibiting discordance (illustrated in Supplementary
Figure 4 and Supplementary Figure 5, for cases of agreement
and disagreement, respectively). This heterogeneity was
particularly evident in non-obstructive CAD cases. Among
123 patients with FFR >0.8, 41 (23.3% of the total cohort)
showed isolated IMR elevation (CFR >2.0 and IMR >25), as
detailed in Supplementary Table 2.

Tahle 2 shows the characteristics of the 216 vessels included
in this study. Among these vessels, 73 (33.8%) had a positive
IMR (median IMR 19.5; interquartile range 13.7-29.6).

IMR,; for non-invasive CMD assessment

Table 1. Baseline characteristics of the study population.

Age, yrs 61.2+8.8
Male 115 (65.3)
Body mass index, kg/m? 24.5+3.1
Diabetes mellitus 45 (25.6)
Hypertension 113 (64.2)
Current smoker 80 (45.5)
Presence of angina 158 (89.78)
eGFR, mL/min/1.73 m? 91.5(78.1, 103.5)
(n=175%)
HbA1lc, mmol/mol 5.8 (5.5, 6.5)
(n=154%)
Total cholesterol, mmol/L 4.2 (3.6, 5.3)
Low-density lipoprotein cholesterol, mmol/L 2.7+0.8
Left ventricular ejection fraction, % 65.0 (61.0, 69.0)
(n=169*)
Total calcification score 92.8 (5.6, 341.3)
(n=164%)
m;rsvuarletr)ﬁé\gtezyega(;sm and invasive IMR 5.0 (4.0, 9.0)
ciher 290% stenosed or occluded 26148
Nitroglycerine, pg
50 25 (14.2)
51-100 146 (83.0)
101-200 5(2.8)

80.0 (80.0, 110.0)

Values are n (%), meanzxstandard deviation, or median (interquartile range
[Q1, Q3]). *Number of patients for whom continuous variables were
calculated. CCTA: coronary computed tomography angiography;

eGFR: estimated glomerular filtration rate; HbAlc: glycated haemoglobin;
IMR: index of microcirculatory resistance; Q1: first quartile; Q3: third
quartile

Contrast agent, mL

Notably, only 15 vessels (6.9%) with a positive IMR showed
a corresponding positive FFR, while the remaining 58 vessels
(26.8%) showed a negative FFR. In the CCTA and coronary
angiography reports, 67 (31.0%) and 34 vessels (15.7%)
exhibited <50% stenosis, respectively.

DIAGNOSTIC PERFORMANCE OF IMR_, FOR IDENTIFYING CMD
OVERALL DIAGNOSTIC PERFORMANCE

The predicted Tmn was validated against invasively measured
Tmn in an independent cohort, showing a strong correlation
(r=0.79; p<0.001) and minimal mean bias (0.05) in Bland-
Altman analysis (Figure 2). In our dataset, the optimal AUC
value at both patient and vessel levels was achieved at an
IMR ., threshold of 23.84. At the vessel level, this threshold
yielded the following values: AUC 0.85 (95% confidence
interval [CI]: 0.80-0.90), accuracy 81.0% (95% CI: 75.1-
86.0%), sensitivity 87.7% (95% CI: 77.9-94.2%), and
specificity 77.6% (95% CI: 69.9-84.2%). The corresponding
patient-level values were as follows: AUC 0.86 (95% CI: 0.80-
0.91), accuracy 80.1% (95% CI: 73.4-85.7%), sensitivity
89.2% (95% CI: 79.1-95.6%), and specificity 74.8% (95%
CL 65.6-82.5%).
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Table 2. Coronary artery characteristics.

Characteristics m

Vessel

LM 0(0)

LAD 135 (62.5)

LCx 32(14.8)

RCA 49 (22.7)
TIMI flow grade

TIMI 3 205 (94.9)

TIMI 1 or TIMI 2 11 (5.1)
FFR 0.86 (0.80, 0.91)
IMR 19.5(13.7, 29.6)
CFR 3.2(2.3,4.8)
IMR,, 21.7 (14.8, 28.6)
Diameter of stenosis based on CCTA, %

<50% 67 (31.0)

50-69% 92 (42.6)

70-90% 57 (26.4)
Diameter of stenosis based on CAG, %

<50% 34 (15.7)

50-69% 125 (57.9)

70-90% 57 (26.4)
Vessels with FFR >0.8 160 (74.1)
Vessels with IMR >25 73 (33.8)
Vessels with IMR; 225 84 (38.9)
Vessels with FFR <0.8 and IMR >25 15 (6.9)
Vessels with FFR <0.8 and IMR <25 41 (19.0)
Vessels with FFR >0.8 and IMR >25 58 (26.8)
Vessels with FFR >0.8 and IMR <25 102 (47.2)

Values are presented as n (%) or median (interquartile range [Q1, Q3]).
CAG: coronary angiography; CCTA: coronary computed tomography
angiography; CFR: coronary flow reserve; FFR: fractional flow reserve;
IMR: index of microcirculatory resistance; IMR.: CCTA-based IMR;
LAD: left anterior descending artery; LCx: left circumflex artery; LM: left
main artery; Q1: first quartile; Q3: third quartile; RCA: right coronary
artery; TIMI: Thrombolysis in Myocardial Infarction

specificity necessitated additional
adjustments. To balance sensitivity and specificity while
improving  understanding,  acceptance,  decision-making,
and result interpretation, we re-evaluated the IMR . using
a threshold of 25, consistent with the threshold for the IMR. At
this threshold, IMR . showed vessel-level accuracy, sensitivity,
and specificity of 81.9% (95% CI: 76.2-86.8%), 80.8%
(95% CL: 69.9-89.1%), and 82.5% (95% CIL: 75.3-88.4%),
respectively (Table 3). Similarly, at the patient level, the predictive

However, the low
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Figure 2. Correlation and agreement between the Tmn
calculated by the IMR ., model and the invasive Tmn.

A) Correlation between predicted and invasively measured
Tmn. B) Bland-Altman plot of predicted versus invasively
measured Tmn. CT: computed tomography; IMR _:
CCTA-based index of microcirculatory resistance;

SD: standard deviation; Tmn: mean transit time

accuracy, sensitivity, and specificity were 80.7% (95% CI:
74.1-86.0%), 81.5% (95% CI: 70.0-90.1%), and 80.2% (95%
CI: 71.5-87.1%), respectively (Table 3). With a cutoff value of
25, the vessel- and patient-level AUCs for predicting IMR >25
were 0.82 (95% CI: 0.76-0.87) and 0.81 (95% CI: 0.74-0.86),
respectively (Figure 3A, Figure 3B). Thus, a cutoff value of 25 for
IMR ., increased specificity while preserving adequate sensitivity
and was particularly beneficial in terms of clinical applicability,
reliability, and user-friendliness. Interestingly, although this
cutoff value did not yield the highest AUC, it demonstrated
greater accuracy than a cutoff value of 23.84. Therefore, we set
the IMR ., cutoff at 25 in our study. Detailed vessel- and patient-
level classifications are provided in Supplementary Table 3.

A notable linear correlation was observed between IMR
and invasively measured IMR, with correlation coefficients of
0.71 at the vessel level (95% CI: 0.62-0.76; p<0.001) and 0.72
at the patient level (95% CI: 0.64-0.78; p<0.001), as shown
in Figure 3C and Figure 3D. Passing-Bablok regression analysis
between the IMR .| and the invasive IMR at the patient level
(Supplementary Figure 6) yielded the following equation:

IMR=-3.02+1.14xIMR,
indicating a small systematic difference (intercept: —=3.02, 95%
CI: -5.90 to —0.59) and a proportional bias (slope: 1.144, 95%
CI: 1.030 to 1.275). The CUSUM test for linearity (p=0.40)
confirmed the appropriateness of the linear model. Bland-Altman
analysis further demonstrated small mean biases of 0.78 (95%
CL: -0.43 to 2.01) and 0.92 (95% CI: -0.45 to 2.29) at the
vessel and patient levels, respectively (Figure 3E, Figure 3F). The
Sankey diagram (Figure 4) illustrates the diagnostic performance
of IMR_,, with correct classification in 81.9% of cases (59
true positives and 118 true negatives) and discordant results in

Table 3. Diagnostic efficacy of IMR, at vessel and patient levels for IMR >25.

Vessel level 216 81.9 80.8
(33.8) (76.2-86.8) (69.9-89.1)

Patient level 176 65 80.7 81.5
(36.9) (74.1-86.0) (70.0-90.1)

The values are presented as n (%) or % (95% confidence interval). AUC: area under the curve; IMR: index of microcirculatory resistance; IMR..

82.5 70.3 89.4 0.82
(75.3-88.4) (61.9-77.4) (84.0-93.1) (0.76-0.87)
80.2 70.7 88.2 0.81
(71.5-87.1) (62.0-78.1) (81.5-92.6) (0.74-0.86)

: coronary

computed tomography angiography-based IMR; NPV: negative predictive value; PPV: positive predictive value

Eurolntervention 2026;22:e44-e54 ¢ Dan Deng et al.
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Figure 3. Per-vessel and per-patient diagnostic performance of
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IMR. AUC: area under the curve; IMR: index of
microcirculatory resistance; IMR : coronary computed
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18.1% (25 false positives and 14 false negatives). The McNemar
test revealed non-significant differences at both the vessel level
(5.09%, 95% CI: =0.53% to 10.72%; p=0.108) and the patient
level (5.68%, 95% CI: -0.76% to 12.12%; p=0.121).
Supplementary Figure 7 illustrates IMR_ computation
under four physiological scenarios: FFR-positive and IMR-
positive, FFR-positive and IMR-negative, FFR-negative and
IMR-positive, and FFR-negative and IMR-negative.

FUNCTIONAL PHENOTYPES AND SUBGROUP
PERFORMANCE ANALYSES

The diagnostic performance of IMR . was evaluated across
key clinical and anatomical subgroups. Analysis of coronary
physiology phenotypes (Supplementary Table 2) revealed four
distinct patterns: normal microvascular function (CFR 22.0
and IMR <25) in 65 cases (36.9%), isolated IMR elevation
(CFR 22.0 and IMR >25) in 41 cases (23.3%), mixed
microvascular dysfunction (CFR <2.0 and IMR 2>25) in
9 cases (5.1%), and functional CMD (CFR <2.0 and IMR
<25) in 8 cases (4.5%). Sex-specific analysis showed isolated
IMR elevation was more prevalent in females (26.2%, 16/61)
than males (21.7%, 25/115), while functional CMD showed
the opposite pattern (females 3.3% [2/61] vs males 5.2%
[6/115]).

IMR,; for non-invasive CMD assessment

IMR
IM_I:_,‘.T 59(27.3%) positive
positive
25 (11.6%)
14(6.5%)
118(54.6%)
IMR
IMR,, negative

negative

Figure 4. Sankey diagram of diagnostic agreement between
IMR .. and IMR for CMD assessment. The Sankey diagram
illustrates the counts and proportions of agreement and
disagreement between IMR . and IMR classifications. Each
coloured segment corresponds to a specific category, with its
width indicating the number of cases. The transitions
between categories highlight patterns of diagnostic
misclassification and provide insights into the performance
of both methods. CMD: coronary microvascular disease;
IMR: index of microcirculatory resistance; IMR .: coronary
computed tomography angiography-based IMR

The diagnostic accuracy of IMR_. showed sex-specific
differences, with higher performance in males (86.2%, 95%
CI: 77.5-92.4%) compared to females (78.7%, 95% CI: 70.2-
92.3%). Accuracy remained comparable between hypertensive
(82.0%) and non-hypertensive patients (81.8%), as well as
between subgroups of diabetic (81.3%) and non-diabetic
patients (82.7%) (Supplementary Table 4, Supplementary
Table 5).

When analysed by coronary territory, IMR .. demonstrated
the highest accuracy in the right coronary artery (RCA; 87.8%;
95% CI: 75.2-95.4%), followed by the left circumflex (LCx;
84.4%; 95% CI: 67.2-94.7%) and left anterior descending
arteries (LAD; 79.3%; 95% CI: 71.4-85.8%), as detailed in
Supplementary Table 6 and Supplementary Tahle 7.

EVALUATING THE POTENTIAL OF IMR_, IN REDUCING
MISDIAGNOSIS ACROSS DIVERSE SUBGROUPS

Since only a few patients underwent IMR measurements in all
three vessels, patient-level analysis may have underestimated
diagnostic omissions. Therefore, we used vessel-level analysis
to accurately assess undetected cases, aiming to gauge the
potential of IMR_, in reducing diagnostic oversights in
the absence of IMR assessment. In every scenario, the use
of IMR, reduced the initial misdiagnosis rate, as detailed
in Table 4. Notably, in patients classified as having non-
obstructive CAD based on CCTA stenosis <50%, coronary
angiography stenosis <50%, or FFR >0.8, the use of IMR
significantly reduced the initial rates of underdiagnosis from
38.8%, 35.3%, and 36.3% to 4.5%, 5.9%, and 5.6%,
respectively.
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Table 4. Assessment of potential misdiagnosis and alterations post-IMR_; implementation across diverse scenarios.

Vessels correctly
o,
Clinical scenarios (n) Vessels with IMR >25 | Initial misdiagnosis, % identified hy IMR,,

CCTA stenosis <50% (67)

CCTA stenosis >50% (149) 47
CAG stenosis <50% (34) 12
CAG stenosis >50% (182) 61
FFR >0.8 (160) 58
FFR <0.8 (56) 1%

Post-IMR .,
misdiagnosis, %
38.8 4.5
31.5 36 7.4
35.3 10 5.9
335 49 6.6
36.3 49 5.6
26.8 10 8.9

The miss rate refers to the proportion of IMR-positive cases within their respective subgroups. CAG: coronary angiography; CCTA: coronary computed
tomography angiography; FFR: fractional flow reserve; IMR: index of microcirculatory resistance; IMR_;: CCTA-based IMR

DECISION CURVE ANALYSIS FOR CLINICAL UTILITY
ASSESSMENT

Decision curve analysis of the IMR . -based predictive model
(Supplementary Figure 8) demonstrated its superior clinical
utility, with the model’s net benefit (Supplementary Figure 8A)
nearly consistently exceeding both the “treat all” and “treat
none” strategies. The model maintained robust performance
across varying clinical scenarios, as shown in Supplementary
Figure 8B where the number of true high-risk patients (dashed
blue line) declined more gradually than the total high-risk
classifications (solid red line) with increasing cost-benefit
ratios (range: 1:100 to 100:1), confirming its ability to
preserve diagnostic accuracy under more stringent criteria
while appropriately reducing unnecessary interventions.

Discussion

To our knowledge, this is the first CT angiography-based
method for evaluating coronary microcirculation. The IMR
demonstrated good correlation with invasively determined
measurements at both the vessel (r=0.71, 95% CI: 0.62-0.76;
p<0.001) and patient (r=0.72, 95% CI: 0.64-0.78; p<0.001)
levels, achieving diagnostic accuracies of 81.9% and 80.7%,
respectively. Thus, IMR ., represents a reliable, non-invasive
tool for diagnosing coronary microvascular disease. Given
the widespread availability of CCTA, IMR _, holds significant
clinical implications (Central illustration).

IMR_; CAN OVERCOME THE LIMITATIONS OF CURRENT
FUNCTIONAL ASSESSMENTS FOR CMD

IMR_., analysis uses multiphase CCTA data from routine
clinical scans with retrospective electrocardiogram gating,
eliminating the need for additional scans. This approach
allows the seamless integration of non-invasive IMR_,
assessments into clinical practice while prioritising patient
safety.

With sensitivities and specificities of approximately 80%
in comparison with invasive IMR measurements, IMR_,
may be suitable for broader clinical adoption. Our findings
were systematically compared with established functional
measurement techniques. A recent meta-analysis demonstrated
that  angiography-derived IMR  achieved diagnostic
parameters of 81% sensitivity, 80% specificity, and an AUC
of 0.868%. Although IMR_, provides similar diagnostic
accuracy, its non-invasive nature represents a distinct clinical
advantage. An apparent discrepancy warrants discussion:
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while Passing-Bablok regression indicated systematic
underestimation of invasive IMR by IMR . (slope B=1.144)
(Supplementary Figure 6), the Sankey diagram revealed a higher
rate of false positives (11.6%) than false negatives (6.5%)
(Figure 4). This paradox can be explained by fundamental
differences between these analytical approaches.

First, the continuous nature of regression analysis captures
absolute measurement differences across the full range of
values, whereas classification-based analysis depends strictly
on threshold-defined categories (IMR 225). Second, IMR .,
exhibits greater variability near the diagnostic cutoff — likely
due to limitations in CT spatial resolution and inherent
haemodynamic fluctuations during measurement — resulting
in more frequent misclassification of true-negative cases,
despite overall lower absolute values. Notably, decision curve
analysis confirmed that these technical discrepancies have
minimal clinical impact (Supplementary Figure 8), as IMR
demonstrated consistently superior net benefit across all risk
thresholds. This suggests that most misclassifications occur in
clinically ambiguous cases, where either diagnostic call would
have little influence on clinical management.

Subgroup analyses revealed important patterns in IMR
performance. While showing consistent accuracy across
subgroups of patients with hypertension and diabetes, IMR .,
demonstrated reduced diagnostic performance in females
and in the left anterior descending artery (likely owing to
its anatomical complexity?*). Sex-specific analysis revealed
females had a higher prevalence of isolated IMR elevation
(26.2% vs 21.7% in males) but lower rates of strictly defined
functional CMD (CFR <2.0 and IMR <25; 3.3% vs 5.2%).
These distinct sex-based patterns reflect well-established
differences in microvascular pathophysiology, the underlying
mechanisms of which warrant further investigation?>27.

We acknowledge that while IMR_. provides reliable
resistance measurement, comprehensive CMD evaluation
requires both resistance-based (IMR) and flow-based (CFR)
metrics. Our data reveal important diagnostic discrepancies
when these metrics are combined: 23.3% of patients exhibited
isolated IMR elevation (CFR >2.0 with IMR >25), while 4.5%
showed isolated CFR impairment (CFR <2.0 with IMR <25)
(Supplementary Tahle 2). These patterns likely reflect distinct
pathophysiological mechanisms - the former suggesting
microvascular remodelling or focal resistance abnormalities
and the latter indicating global flow impairment due to
endothelial dysfunction or diffuse disease. This validation
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IMR ., leverages routine CCTA to provide an accurate, non-invasive approach for CMD diagnosis, markedly reducing missed
diagnoses and overcoming the limitations of conventional methods. AUC: area under the curve; CCTA: coronary computed
tomography angiography; CMD: coronary microvascular disease; IMR: index of microcirculatory resistance; IMR : CCTA-

Merits of IMR ,

38.80%
Accuracy 81.9%
Sensitivity 80.8%
Specificity 82.5%
AU 0.82 el

study was intentionally designed to evaluate IMR .. against
invasive IMR, positioning it as a complementary tool
rather than a complete substitute for existing diagnostics.
The observed discrepancies between IMR and CFR
measurements underscore why neither metric alone suffices
for comprehensive CMD assessment. Our approach proves
particularly valuable for the clinically relevant subgroup with
isolated IMR elevation, though we recognise that patients
with discordant CFR/IMR findings (e.g., preserved IMR with
low CFR) represent a diagnostic gap for IMR .| in its current
form.

While some evidence suggests better outcomes for
patients with isolated IMR elevation compared to those
with combined abnormalities, their long-term prognosis
requires further study. Notably, our data show that 38% of
vessels with FFR >0.8 had abnormal IMR but normal CFR,
highlighting how IMR_, could detect early microvascular
disease missed by flow-based assessments alone. Emerging
CT-based CFR techniques may soon enable fully non-
invasive multimodal
IMR , potentially resolving these diagnostic discrepancies
by capturing both resistance and flow components of CMD
pathophysiology.

assessment when combined with

IMR_, CAN MITIGATE THE UNDERDIAGNOSIS OF CMD
ACROSS DIVERSE CLINICAL SCENARIOS

CMD accounts for 28% to 43% of chest pain cases with
non-obstructive CAD?® and shows a comorbidity rate
of 41%?%. Vessels showing <50% stenosis on CCTA/
coronary angiography or FFR >0.8 are considered low risk
and often not tested further. In our study, many of these
vessels showed positive invasive IMR results, indicating
missed CMD diagnoses, and IMR_, substantially reduced
these missed diagnoses. Thus, IMR_. can decrease CMD
underdiagnosis rates in non-obstructive CAD. Early diagnosis
and tiered management of CMD can significantly improve
angina symptoms and quality of life’. Since clinicians often
tend to focus on major epicardial vessel lesions, potentially
overlooking concurrent microvascular disease, IMR ., can help
identify coexisting CMD in patients with obstructive CAD
(CCTA/coronary angiography stenosis 250% or FFR <0.8).

IMR_; CAN YIELD NON-INVASIVE ASSESSMENTS OF ALL
MAJOR CORONARY ARTERIES

To assess the overall microcirculatory condition of the
myocardium, IMR measurements of all three major coronary
arteries are necessary. In the 3V FFR-FRIENDS study?!, among
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patients undergoing three-vessel IMR evaluation, 59.1% had
no CMD, while 23.7% had CMD in one vessel, 14.0% in two
vessels, and 3.2% in all three vessels. Moreover, the incidence
of CMD was similar across the LAD, LCx, and RCA32,

The 3V FFR-FRIENDS study?' enrolled patients with
>30% stenosis in all three coronary arteries, but in real-
world clinical practice, patients often show a combination
of stenotic and non-stenotic vessels. Ethical concerns limit
invasive examinations to stenotic or slow-flow vessels,
often the LAD. In our study, we analysed 135 LAD, which
constituted 62.5% of the total vessels measured, aligning with
the Swedish CArdioPulmonary Biolmage Study cohort’s®
findings that the LAD had the highest prevalence of disease.
However, we also found IMR-positive results in 32 LCx and
49 RCA, indicating that CMD can affect vessels beyond the
left anterior descending artery.

Furthermore, the inconsistencies in IMR measurements
in multiple coronary vessels indicated heterogeneity in
microvascular function across different myocardial territories,
potentially due to factors like blood flow characteristics,
vessel dimensions, the supplied myocardial mass, and
other mechanisms that remain to be elucidated?***. IMR
overcomes this limitation by simultaneously assessing
myocardial perfusion across all major coronary arteries,
providing a practical solution for this issue.

Limitations

This study has several limitations. First, as a retrospective,
single-centre study focusing on stable CAD patients, our
analysis may be subject to selection bias. The current
study also lacks standardised documentation of Canadian
Cardiovascular Society class and New York Heart Association
Functional Class, which limits our ability to correlate symptom
severity with IMR ., values. These gaps are being addressed in
an ongoing multicentre prospective trial that is incorporating
structured symptom assessment and hard clinical endpoints
to fully define the clinical utility of IMR ... Second, inherent
limitations of CCTA include reduced accuracy in patients with
arrhythmias, tachycardia, or extensive coronary calcification
— challenges that may be mitigated by future technical
advancements and imaging strategies. Third, while IMR_,
reliably assesses hyperaemic microvascular resistance, it has
inherent limitations in fully characterising CMD. Specifically,
it cannot assess functional CMD manifestations or detect
vasospastic components — since acetylcholine provocation
testing was not performed — and requires complementary flow-
based metrics such as CFR for a comprehensive evaluation.
Emerging approaches like microvascular resistance reserve®
may offer additional insights, particularly in patients with
mixed disease phenotypes. However, current invasive protocols
that integrate IMR, CFR, and vasomotor function testing
remain the reference standard for a complete physiological
assessment of the coronary microcirculation. Fourth, IMR
computation remains influenced by the accuracy of the outlet
hyperaemic flow boundary conditions, and further efforts
are needed to improve outlet flow estimation’t. The vessel
wall material parameters are currently based on fixed values
derived from healthy subjects and are not personalised for
individual patients, which may limit the accuracy of modelling
vessel elasticity in specific cases. Additionally, the empirical
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relationship used to convert resting flow to hyperaemic flow
is derived from population-level data and may not be fully
applicable to all patient subgroups.

Conclusions

This study clarified the potential of IMR . measurements for
CMD. Advancements in image reconstruction can improve
the spatial resolution of CCTA and enhance the accuracy of
IMR ., thereby facilitating early detection, precise assessment,
and management of CMD.

Authors’ affiliations

1. Department of Cardiovascular Medicine, Center for
Circadian Metabolism and Cardiovascular Disease, Southwest
Hospital, Army Medical University, Chongqing, China; 2. Key
Laboratory of Geriatric Cardiovascular and Cerebrovascular
Disease, Ministry of Education, Chongqing, China; 3. School
of Biomedical Engineering, Sun Yat-sen University, Shenzhen,
China; 4. Department of Radiology, Southwest Hospital, Army
Medical University, Chongging, China; 5. Department of
Health Statistics, Army Medical University, Chongqing, China;
6. Archimedes Unit, Athena Research Centre, Athens, Greece;
7. Computer Science and Electronic Engineering, University of
Essex, Colchester, United Kingdom; 8. Department of Medicine
and Therapeutics, Faculty of Medicine, The Chinese University
of Hong Kong, Hong Kong, China; 9. Bioengineering
Department and Imperial-X, Imperial College London,
London, United Kingdom

Funding
This study was supported by the Chongging Talent Program

(CQYC20210303360), the Chongging Technological
Innovation and Application Development Special Key
Project  (CSTB2023TIAD-KPX0061-2, CSTB2023TIAD-

KPX0061-6), the National Natural Science Foundation of
China (62101610, 62271511, 62101606, 62276282), the
Chongqing Graduate Scientific Research and Innovation
Project (CYB240291), and the Clinical Research Incubation
Program of the First Affiliated Hospital of Army Medical
University (20231ITZD04).

Conflict of interest statement
The authors have no conflicts of interest to declare.

References

1. Yang Z, Liu Y, Li Z, Feng S, Lin S, Ge Z, Fan Y, Wang Y, Wang X, Mao J.
Coronary microvascular dysfunction and cardiovascular disease:
Pathogenesis, associations and treatment strategies. Biomed Pharmacother.
2023;164:115011.

2. Likoff W, Segal BL, Kasparian H. Paradox of normal selective coronary
arteriograms in patients considered to have unmistakable coronary heart
disease. N Engl ] Med. 1967;276:1063-6.

3. Vandeloo B, Andreini D, Brouwers S, Mizukami T, Monizzi G, Lochy S,
Mileva N, Argacha JF, De Boulle M, Muyldermans P, Belmonte M, Sonck J,
Gallinoro E, Munhoz D, Roosens B, Trabattoni D, Galli S, Seki R,
Penicka M, Wyffels E, Mushtaq S, Nagumo S, Pardaens S, Barbato E,
Bartorelli AL, De Bruyne B, Cosyns B, Collet C. Diagnostic performance of
exercise stress tests for detection of epicardial and microvascular coronary
artery disease: the UZ Clear study. Eurolntervention. 2023;18:¢1090-8.

4. Bergamaschi L, De Vita A, Villano A, Tremamunno S, Armillotta M,
Angeli F, Belmonte M, Paolisso P, Foa A, Gallinoro E, Polimeni A, Sucato V,
Morrone D, Tuttolomondo D, Pavon AG, Guglielmo M, Gaibazzi N,



Mushtaq S, Perrone Filardi P, Indolfi C, Picano E, Pontone G, Lanza GA,
Pizzi C; Coronary Physiopathology and Microcirculation Working Group
of the Italian Society of Cardiology (SIC). Non-invasive imaging assess-
ment in angina with non-obstructive coronary arteries (ANOCA). Curr
Probl Cardiol. 2025;50:103021.

. Schindler TH, Dilsizian V. Coronary Microvascular Dysfunction: Clinical

Considerations and Noninvasive Diagnosis. JACC Cardiovasc Imaging.
2020;13:140-55.

. Fearon WF, Balsam LB, Farouque HM, Caffarelli AD, Robbins RC,

Fitzgerald PJ, Yock PG, Yeung AC. Novel index for invasively assessing the
coronary microcirculation. Circulation. 2003;107:3129-32.

. Fearon WE, Low AF, Yong AS, McGeoch R, Berry C, Shah MG, Ho MY,

Kim HS, Loh JP, Oldroyd KG. Prognostic value of the Index of
Microcirculatory Resistance measured after primary percutaneous coro-
nary intervention. Circulation. 2013;127:2436-41.

. Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C,

Prescott E, Storey RF, Deaton C, Cuisset T, Agewall S, Dickstein K,
Edvardsen T, Escaned ], Gersh BJ, Svitil P, Gilard M, Hasdai D, Hatala R,
Mahfoud F, Masip J, Muneretto C, Valgimigli M, Achenbach S, Bax JJ;
ESC Scientific Document Group. 2019 ESC Guidelines for the diagnosis
and management of chronic coronary syndromes. Eur Heart J.
2020;41:407-77.

. Collet C, Sakai K, Mizukami T, Ohashi H, Bouisset F, Caglioni S, van

Hoe L, Gallinoro E, Bertolone DT, Pardaens S, Brouwers S, Storozhenko T,
Seki R, Munhoz D, Tajima A, Buytaert D, Vanderheyden M, Wyffels E,
Bartunek J, Sonck J, De Bruyne B. Vascular Remodeling in Coronary
Microvascular Dysfunction. JACC Cardiovasc Imaging. 2024;17:
1463-76.

. Geng Y, Liu H, Wang X, Zhang ], Gong Y, Zheng D, Jiang J, Xia L. Effect

of microcirculatory dysfunction on coronary hemodynamics: A pilot study
based on computational fluid dynamics simulation. Comput Biol Med.
2022;146:105583.

. Rabbat MG. Transforming the Coronary Artery Disease Care Pathway

Bridging Computational Fluid Dynamics to Coronary CTA. JACC
Cardiovasc Imaging. 2022;15:1059-62.

. Yan Q, Xiao D, Jia Y, Ai D, Fan J, Song H, Xu C, Wang Y, Yang J. A multi-

dimensional CFD framework for fast patient-specific fractional flow
reserve prediction. Comput Biol Med. 2024;168:107718.

.Narula J, Chandrashekhar Y, Ahmadi A, Abbara S, Berman DS,

Blankstein R, Leipsic J, Newby D, Nicol ED, Nieman K, Shaw L,
Villines TC, Williams M, Hecht HS. SCCT 2021 Expert Consensus
Document on Coronary Computed Tomographic Angiography: A Report
of the Society of Cardiovascular Computed Tomography. | Cardiovasc
Comput Tomogr. 2021;15:192-217.

. Kobayashi Y, Fearon WE Invasive coronary microcirculation assessment-

-current status of index of microcirculatory resistance. Circ J. 2014;78:
1021-8.

. Kunadian V, Chieffo A, Camici PG, Berry C, Escaned ], Maas AHEM,

Prescott E, Karam N, Appelman Y, Fraccaro C, Buchanan GL, Manzo-
Silberman S, Al-Lamee R, Regar E, Lansky A, Abbott JD, Badimon L,
Duncker DJ, Mehran R, Capodanno D, Baumbach A. An EAPCI Expert
Consensus Document on Ischaemia with Non-Obstructive Coronary
Arteries in Collaboration with European Society of Cardiology Working
Group on Coronary Pathophysiology & Microcirculation Endorsed by
Coronary  Vasomotor  Disorders International  Study  Group.
Eurolntervention. 2021;16:1049-69.

. Yong AS, Layland J, Fearon WE, Ho M, Shah MG, Daniels D, Whitbourn R,

Macisaac A, Kritharides L, Wilson A, Ng MK. Calculation of the index of
microcirculatory resistance without coronary wedge pressure measurement
in the presence of epicardial stenosis. JACC Cardiovasc Interv. 2013;6:
53-8.

. Xue X, Deng D, Zhang H, Gao Z, Zhu P, Hau WK, Zhang Z, Liu X. Non-

Invasive Assessment of Coronary Microvascular Dysfunction Using
Vascular Deformation-Based Flow Estimation. IEEE Trans Biomed Eng.
2024;71:3000-13.

. Gao Z, Wang X, Sun S, Wu D, Bai J, Yin Y, Liu X, Zhang H, de

Albuquerque VHC. Learning physical properties in complex visual scenes:
An intelligent machine for perceiving blood flow dynamics from static CT
angiography imaging. Neural Netw. 2020;123:82-93.

20.

21,

22,

23.

24,

25.

26.

217.

28.

29,

30.

31.

32,

33.

IMR,; for non-invasive CMD assessment

. Tu S, Westra J, Yang ], von Birgelen C, Ferrara A, Pellicano M, Nef H,

Tebaldi M, Murasato Y, Lansky A, Barbato E, van der Heijden LC,
Reiber JHC, Holm NR, Wijns W; FAVOR Pilot Trial Study Group.
Diagnostic ~ Accuracy of Fast Computational Approaches to
Derive Fractional Flow Reserve From Diagnostic Coronary Angiography:
The International Multicenter FAVOR Pilot Study. JACC Cardiovasc
Interv. 2016;9:2024-35.

Pfaller MR, Pham J, Verma A, Pegolotti L, Wilson NM, Parker DW,
Yang W, Marsden AL. Automated generation of 0D and 1D reduced-order
models of patient-specific blood flow. Int ] Numer Method Biomed Eng.
2022;38:¢3639.

Xue X, Liu X, Gao Z, Wang R, Xu L, Ghista D, Zhang H. Personalized
coronary blood flow model based on CT perfusion to non-invasively calcu-
late fractional flow reserve. Computer Methods in Applied Mechanics and
Engineering. 2023;404:115789.

Olufsen MS. Structured tree outflow condition for blood flow in larger
systemic arteries. Am | Physiol. 1999;276:H257-68.

Li W, Takahashi T, Rios SA, Latib A, Lee JM, Fearon WE, Kobayashi Y.
Diagnostic performance and prognostic impact of coronary angiography-
based Index of Microcirculatory Resistance assessment: A systematic
review and meta-analysis. Catheter Cardiovasc Interv. 2022;99:286-92.

Tamaru H, Fujii K, Fukunaga M, Imanaka T, Kawai K, Miki K,
Horimatsu T, Nishimura M, Saita T, Sumiyoshi A, Shibuya M, Masuyama T,
Ishihara M. Mechanisms of gradual pressure drop in angiographically nor-
mal left anterior descending and right coronary artery: Insights from wave
intensity analysis. | Cardiol. 2021;78:72-8.

Kaski JC. Overview of gender aspects of cardiac syndrome X. Cardiovasc
Res. 2002;53:620-6.

Li JJ, Zhu CG, Nan JL, Li J, Li ZC, Zeng HS, Gao Z, Qin XW, Zhang CY.
Elevated circulating inflammatory markers in female patients with cardiac
syndrome X. Cytokine. 2007;40:172-6.

Jones S, McNeil M, Koczo A. Updates in Cardiovascular Disease
Prevention, Diagnosis, and Treatment in Women. Med Clin North Am.
2023;107:285-98.

Aribas E, Roeters van Lennep JE, Elias-Smale SE, Piek ]JJ, Roos M,
Ahmadizar F, Arshi B, Duncker D], Appelman Y, Kavousi M. Prevalence of
microvascular angina among patients with stable symptoms in the absence
of obstructive coronary artery disease: a systematic review. Cardiovasc Res.
2022;118:763-71.

Mileva N, Nagumo S, Mizukami T, Sonck ], Berry C, Gallinoro E,
Monizzi G, Candreva A, Munhoz D, Vassilev D, Penicka M, Barbato E, De
Bruyne B, Collet C. Prevalence of Coronary Microvascular Disease and
Coronary Vasospasm in Patients With Nonobstructive Coronary Artery
Disease: Systematic Review and Meta-Analysis. | Am Heart Assoc.
2022;11:¢023207.

Ford TJ, Stanley B, Good R, Rocchiccioli P, McEntegart M, Watkins S,
Eteiba H, Shaukat A, Lindsay M, Robertson K, Hood S, McGeoch R,
McDade R, Yii E, Sidik N, McCartney P, Corcoran D, Collison D, Rush C,
McConnachie A, Touyz RM, Oldroyd KG, Berry C. Stratified Medical
Therapy Using Invasive Coronary Function Testing in Angina: The
CorMicA Trial. ] Am Coll Cardiol. 2018;72:2841-55.

Lee JM, Koo BK, Shin ES, Nam CW, Doh JH, Hwang D, Park J, Kim KJ,
Zhang J, Hu X, Wang J, Ahn C, Ye F, Chen S, Yang J, Chen J, Tanaka N,
Yokoi H, Matsuo H, Takashima H, Shiono Y, Akasaka T. Clinical implica-
tions of three-vessel fractional flow reserve measurement in patients with
coronary artery disease. Eur Heart J. 2018;39:945-51.

Kobayashi Y, Lee JM, Fearon WE Lee JH, Nishi T, Choi DH,
Zimmermann FM, Jung JH, Lee HJ, Doh JH, Nam CW, Shin ES, Koo BK.
Three-Vessel Assessment of Coronary Microvascular Dysfunction in
Patients With Clinical Suspicion of Ischemia: Prospective Observational
Study With the Index of Microcirculatory Resistance. Circ Cardiovasc
Interv. 2017;10:e005445.

Bergstrom G, Persson M, Adiels M, Bjoérnson E, Bonander C, Ahlstrom H,
Alfredsson ], Angerds O, Berglund G, Blomberg A, Brandberg J,
Borjesson M, Cederlund K, de Faire U, Duvernoy O, Ekblom O,
Engstrom G, Engvall JE, Fagman E, Eriksson M, Erlinge D, Fagerberg B,
Flinck A, Gongalves I, Hagstrom E, Hjelmgren O, Lind L, Lindberg E,
Lindqvist P, Ljungberg J, Magnusson M, Mannila M, Markstad H,
Mohammad MA, Nystrom FH, Ostenfeld E, Persson A, Rosengren A,

Eurolntervention 2026;22:e¢44-e54 ¢ Dan Deng et al.

el



e’

Sandstrom A, Sjilander A, Skold MC, Sundstrom J, Swahn E, Séderberg S,
Torén K, Ostgren CJ, Jernberg T. Prevalence of Subclinical Coronary
Artery  Atherosclerosis in the General Population.
2021;144:916-29.

Circulation.

34. Muroya T, Kawano H, Yamamoto F, Maemura K. Coronary microvascular
resistance comparison of coronary arteries with and without considering
vascular diameter: A retrospective, single-center study. Health Sci Rep.
2023;6:¢1714.

35. Gallinoro E, Bertolone DT, Mizukami T, Paolisso P, Bermpeis K, Munhoz D,
Sakai K, Seki R, Ohashi H, Esposito G, Caglioni S, Mileva N, Leone A,
Candreva A, Belmonte M, Storozhenko T, Viscusi MM, Vanderheyden M,
Wyffels E, Bartunek J, Sonck ], Barbato E, Collet C, De Bruyne B.
Continuous vs Bolus Thermodilution to Assess Microvascular Resistance
Reserve. JACC Cardiovasc Interv. 2023;16:2767-77.

36. Lodi Rizzini M, Candreva A, Chiastra C, Gallinoro E, Calo K, D’Ascenzo F,
De Bruyne B, Mizukami T, Collet C, Gallo D, Morbiducci U. Modelling
coronary flows: impact of differently measured inflow boundary condi-
tions on vessel-specific computational hemodynamic profiles. Comput
Methods Programs Biomed. 2022;221:106882.

Supplementary data

Supplementary Appendix 1. Methodology of IMR .. computation.
Supplementary Table 1. Consistency analysis of vessel counts
and intervascular IMR values in patient measurements.
Supplementary Table 2. Functional phenotyping of coronary
physiology in the study population.

Supplementary Table 3. Number of vessels with IMR_.. and
IMR above and below the threshold value of 25.
Supplementary Table 4. Number of vessels with IMR_. and
IMR above or below 25 grouped by sex, hypertension, and
diabetes status.

Eurolntervention 2026;22:e¢44-¢54  Dan Deng et al.

Supplementary Table 5. Diagnostic efficacy of IMR . for IMR
>25 categorised by sex, hypertension, and diabetes status at
the vessel level.

Supplementary Table 6. Number of vessels with IMR . and
IMR above or below 25 grouped by location: LAD, LCx, and
RCA.

Supplementary Table 7. Diagnostic efficacy of IMR_ at the
vessel level for IMR >25 in the LAD, LCx, and RCA.
Supplementary Figure 1. Simplified schematic of the IMR_
computational pipeline.

Supplementary Figure 2. Workflow diagram of the IMR_
model.

Supplementary Figure 3. Study flowchart.

Supplementary Figure 4. Examples of IMR_.. computations
for case 42, wherein all three coronary vessels exhibited
concordant IMR values.

Supplementary Figure 5. Examples of IMR_. computations
for case 128, wherein all three coronary vessels exhibited
discordant IMR values.

Supplementary Figure 6. Passing-Bablok regression analysis
between IMR ., and invasive IMR measurements.
Supplementary Figure 7. Examples of IMR_ computation
under different physiological scenarios.

Supplementary Figure 8. Decision curve analysis of the IMR _-
based predictive model.

T

T

The supplementary data are published online at:
https:/leurointervention.pcronline.com/
doi/10.4244/E1]-D-25-00671




Supplementary data

Supplementary Appendix 1. Methodology of IMRcT computation.
1. Overview of the IMRcr model
We propose a model designed to noninvasively compute the index of microcirculatory
resistance (IMR) from coronary computed tomography angiography (CCTA), a promising
technique for quantitatively assessing coronary microvascular dysfunction (CMD). The model
directly estimates hyperemic coronary blood flow (CBF), which serves as the essential input
for IMRct computation. A simplified schematic of the overall computational pipeline is
presented in Supplementary Figure 1, highlighting the modular workflow from CCTA image
processing to final IMRct output. A more detailed diagram of the modeling strategy is
provided in Supplementary Figure 2, outlining the major computational steps, including
vascular deformation extraction, CBF estimation through inverse modeling, and computational
fluid dynamics (CFD) simulation. Briefly, the model extracts vascular deformations from
multi-phase CCTA and applies inverse problem-solving to estimate hyperemic CBF based on
physical constraints between deformation and flow. This approach allows for individualized
estimation of CBF by ensuring the appropriate application of constraints on vascular
deformation in each segment. The estimated CBF is then used to define outlet boundary
conditions for patient-specific CFD simulation, from which pressure and velocity fields are
computed to derive IMRcr. The total computation time is divided into three components:
coronary segmentation and vascular deformation extraction (approximately 5 minutes), CBF
estimation (approximately 5 minutes), and three-dimensional (3D) CFD simulation
(approximately 20 minutes).
2. Inverse problem solving of CBF
2.1 Coronary segmentation

The algorithm for coronary lumen segmentation is from our previous study'®. First, this
segmentation method locates the aorta by detecting a circle-like object in CCTA images via
Hough transform. After that, it detects the location of the intersection between the aorta and
the coronary artery (i.e. the root of coronary tree) by the region growing strategy. The location
of the coronary root is considered within a circular region. The diameter of the circular region
is 1.2 times larger than the radius of the aorta. Second, the image patch is obtained by using a
3D window centered as the coronary root. Within this image patch, we apply U-net for
detecting the region of the coronary artery and the dynamic programming algorithm for

extracting the segment of the coronary centerline. Finally, a 3D window is moved along the



direction of the detected centerline segment. The above detection procedure of coronary region
and centerline is repeated until the entire coronary artery is segmented. We employ the above
steps on multi-phase CCTA images to segment the coronary artery models at different phases.
In addition, a standard truncation strategy is applied at the outlet of the first-generation branch
of the main 3D coronary artery model, approximately five times the diameter from the
bifurcation?!. This method can reduce the impact of spatial resolution limitations of CCTA,
thereby enhancing the coronary segmentation reliability.

2.2 Vascular deformation extraction and constraint sampling

After coronary segmentation, we extract vascular deformation by analyzing the dynamic
changes in lumen dimensions throughout the cardiac cycle. We calculate the cross-sectional
area at various points along the coronary centerline, focusing on changes in the lumen. For
coronary CCTA images acquired at different phases, we extract and align the centerline across
each phase using non-rigid registration techniques, with vascular bifurcation points serving as
key landmarks. This alignment ensures accurate tracking of lumen changes at each point
across different time phases. To ensure accuracy, we limit the analysis to vessels with
diameters greater than 2 mm, as smaller vessels are more prone to measurement errors. We
also implement an error control mechanism, applying smoothing and data fitting techniques to
reduce noise and improve data reliability. This approach provides robust analysis of vessel
deformation, which is crucial for accurate coronary flow assessment.

This study acquires CCTA images using retrospective ECG gating and reconstructs the entire
cardiac cycle into 10 evenly spaced phases. For a typical heart rate range of 60-75 beats per
minute, this protocol provides a temporal resolution of approximately 80-100 milliseconds per
phase. The IMRcr simulation requires the average blood flow as a boundary condition;
therefore, this method aims to estimate the average blood flow over the cardiac cycle. In this
approach, the amplitude of vessel deformation (i.e., the range between maximum and
minimum cross-sectional area) serves as the primary feature. This metric is expected to reflect
average flow while being relatively insensitive to instantaneous deformation details. Given
this consideration, a sampling density of 10 phases is considered adequate to capture the
essential deformation dynamics required for accurate flow estimation.

Regarding the sampling interval and number of cross-sectional constraints for vascular
deformation, we extract deformation data from multi-phase CCTA by sampling cross-sectional
areas along the coronary artery centerline at regular intervals of approximately 2-3 mm. Since
the major coronary arteries and their branches typically extend over several centimeters to

about 10 cm, this approach yields dozens of cross sections per vessel segment. This spatial



resolution effectively captures the spatial distribution of vascular deformation and enables
robust inverse modeling. Moreover, the sampling density meets the constraint requirements of
inverse modeling and supports stable and reliable estimation of CBF.
To ensure modeling accuracy while considering the limitations of image resolution, vascular
deformation and cross-sectional area constraints are applied only to vessel segments with
diameters greater than 2 mm. Given the spatial resolution of coronary CTA (~0.3 mm), the
corresponding cross-sectional area includes about 40-140 pixels, which is sufficient for
quantifying area changes and applying physical constraints in inverse modeling. In contrast,
for vessel segments with diameters smaller than 2 mm, direct cross-sectional analysis is not
performed due to increased susceptibility to imaging artifacts and segmentation inaccuracies.
Instead, blood flow in these small segments is inferred based on the principle of mass
conservation and the estimated flow in adjacent, larger vessel segments. This approach enables
CBF estimation across the entire coronary artery tree, facilitating IMRct computation.
2.3 Inverse estimation of resting coronary flow

The concept of inverse problem solving provides the possibility to estimate CBF based on
vascular deformation extracted from multi-phase CCTA. Solving an inverse problem requires
establishing a physical relationship between known variables and the unknown solution
variable. Vascular deformation is influenced by blood flow. Therefore, we can estimate blood
flow by inversely solving for temporal deformation in the vascular cross-sectional area from
multi-phase CCTA. Here, we assume the vessel wall is impermeable and the blood is an
incompressible Newtonian fluid. Vascular deformation refers to changes in cross-sectional
area. The centerline at the 0% cardiac phase is used as the baseline model for inverse problem
solving. The hydrodynamic equations can express the physical relationship between vascular

deformation and blood flow:
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where z is the blood vessel's centerline axial coordinate; Q is the flow rate; p is the pressure; t
is the time; S is the cross-sectional area; p is the density of blood; f is the body force; P? is the
reference pressure; 10 is the reference radius; k1, k2, and k3 are material properties of elastic
wall. We employ a nonlinear (Olufsen) constitutive material model in this study, with k; = 2.00

x 107 g-s2em!, ko =-22.53 cm™!, and ks = 8.65 x 10° g-s2:cm’!. The choice of velocity profile



determines the variable N?°. These three mathematical equations describe the relationship
between vascular deformation, CBF, and blood pressure. For the coronary artery model, the
blood pressure at the coronary artery inlet and the vascular deformation across the entire
coronary artery can be considered as known variables, while CBF is the unknown variable. We
can apply the concept of solving inverse problems to implicitly derive the CBF. Specifically,
we adjust the parameters of the lumpted parameter model to fit both the vascular deformation
and blood pressure, thereby obtaining the target CBF, as shown in Supplementary Figure 2B.
The numerical solution of this inverse problem for estimating CBF can utilize the zero-
dimensional lumped parameter model as a boundary condition'’, as illustrated in
Supplementary Figure 2. The coronary inlet pressure curve is regulated by adjusting the
parameters within the heart, aorta, systemic circulation, and pulmonary modules. This curve
can be calibrated using cuff-measured blood pressure prior to CCTA. By optimizing the
lumped parameter model parameters, the simulation results align with the clinical observation
data (vascular deformation and brachial cuff pressure), ultimately yielding the resting CBF.
This approach avoids circular reasoning because the parameter adjustment does not rely on
fitting the blood flow curve to reverse-predict blood flow; instead, it predicts blood flow by
fitting vascular deformation and pressure data.

Using this method, we can determine the CBF for each vascular segment, including the total
at the inlet and the flow at each outlet. Vascular segments are delineated based on the locations
of coronary bifurcations. In cases of parameter discrepancies, the simulated annealing
algorithm is employed to optimize these parameters. The least-squares error E quantifies the
discrepancies between the vascular deformation and coronary inlet pressure relative to the
ground truth, and is defined as follows:

EA = ¥h=1(A% — Agr)? “

EP = Ykt (Pear — P’ (5)
In this analysis, E* represents the errors between the vascular deformation curve and the
ground truth, while E” denotes the errors between the coronary inlet pressure and the ground
truth. The variables n and k correspond to the sampling points on the vascular deformation and
coronary inlet pressure, respectively. Furthermore, AY, and Pckal indicate the calculated
cross-sectional area and coronary inlet pressure, with AL and P& representing the
respective ground truths.
It is important to note that the precision of vascular deformation extraction varies across

different vascular segments due to the spatial resolution limitations of CCTA. The imaging



quality of CCTA improves as the diameter of the vessels increases, resulting in the highest
reliability in extracting vascular deformation in larger vessel segments. Therefore, to enhance
the estimation of CBEF, it is necessary to assign differential error weights, E, to various
vascular segments. The coronary inlet vascular segment, which has the largest diameter,
requires the highest error weights. This segment's blood flow reflects the total CBF across all
downstream coronary segments, and the accuracy of this measurement is critical for
determining the distribution of outlet blood flow. Moderate error weights are assigned to the
main branch vascular segments, while smaller branch vessels receive lower weights. The total

E is the cumulative sum of errors at all observation positions:

Etotal = Z] 1 Wh EA +E” (6)
In this model, wn, represents the differential error weights assigned to each vascular segment,
E]Aquantiﬁes the vascular deformation error at various observation positions compared to the

ground truth, and j denotes these observation positions. Additionally, EP represents the errors
in the coronary inlet pressure relative to the ground truth.

2.4 Hyperemic flow estimation

Previous research has demonstrated that the relationship between hyperemic CBF and resting
CBF follows a quadratic function'®. This relationship was established based on population-
level data without explicit subgroup stratification, and is intended to provide a generally
applicable estimation of hyperemic flow across patient populations. Using this function, we

can adjust the total resting CBF to reflect maximal hyperemia. The total hyperemic CBF

(Qtotal) is expressed as follows:

h
Qeotal = Co + ¢4 X Qfetar + €2 X (Qtota)? (7
where co, ¢1, and ¢z are 0.10, 1.55 and -0.93. We allocate the total hyperemic CBF Qgﬁi’l

each outlet based on the proportional distribution of resting CBF, which is described as

follows:
rest
hyp hyp ., Qouti
Qout i Qtotal reSt (8)
total
where Qoutl and Qtotal are mean blood flow.

2.5 Vessel wall material parameters

In this study, the material parameters ki, k2, and k3 are adopted from the nonlinear elastic
vessel wall model proposed by Olufsen et al.?2, with values of ki =2.00 x 107 g-s2cm™, ko = -
22.53 cm™, and k3 = 8.65 x 10° g's>cm . These constants are empirically derived from vessel

compliance data of healthy subjects and represent the average elastic properties of normal



arteries. In our model, these parameters are applied as fixed constants to all patients’ normal
vessel segments and do not incorporate patient-specific variations. We acknowledge this as a
limitation of the current model, as patient-specific personalization of vessel elasticity in
normal segments is not implemented.

2.6 Handling of calcified segments

Our method is applicable to patients with calcified lesions. In these cases, we adopt a selective
constraint strategy to ensure modeling accuracy. Specifically, vascular deformation constraints
are applied only to anatomically normal and elastically preserved vessel segments, while
calcified plaque regions are explicitly excluded from such constraints. This selective approach
prevents potential errors caused by insufficient deformation in calcified areas, while in the
non-calcified regions, the vessels retain good elasticity, allowing for significant deformation
and a more accurate reflection of dynamic blood flow changes. Moreover, we leverage the
principle of flow conservation between vessel segments. Since blood flow in the coronary
system is continuous, even if certain segments are not constrained due to calcification, their
blood flow is still influenced by other normal vessel segments. Therefore, despite minimal
deformation in calcified regions, we can accurately infer the blood flow in these areas using
deformation data from upstream and downstream non-calcified segments, effectively
compensating for the impact of insufficient deformation. Additionally, the coronary inlet
segment typically experiences less calcification, and deformation in this segment is directly
related to the total blood flow. As this segment reflects the total blood flow of all downstream
coronary segments, deformation constraints applied here are critical for estimating overall
blood flow. By assigning higher error weights and applying deformation constraints to these
key inlet segments, we ensure accurate blood flow estimation, which is propagated to calcified
regions through flow conservation. Ultimately, this strategy allows for the estimation of the
CBF at the outlet (Q5er;)- The blood flow at the inlet vascular segment constitutes the total
CBF (Qieia), where both Qbex; and Qfers represent average blood flow rates.

3. IMRct computation

3.1 Mesh generation

The IMRcT computation process includes reconstructing the coronary 3D model, generating
meshes, setting boundary conditions, and performing steady-state 3D CFD simulations, as
illustrated in Supplementary Figure 2. To minimize computation time and cost, we focus
solely on the target vessel's IMRcr in this study. A high-quality tetrahedral mesh is generated
for the selected model. Based on our prior mesh sensitivity analysis, a refined mesh with

approximately one million elements is sufficient for accurate CFD simulations of the coronary



artery model?!.
3.2 Boundary condition
During clinical IMR assessments, the coronary inlet pressure is typically equated to the mean
aortic pressure (MAP). It is assumed that the difference between the MAP in the resting state
and during hyperemia is negligible. Consequently, the steady-state inlet boundary condition
(BCinlet) can be expressed as follows:

BCinlet = MAP = 0.4 X (SBP — DBP) + DBP 9)
In this model, SBP and DBP denote the brachial systolic and diastolic blood pressures,
respectively. The IMRcr computation uses the mean outlet blood flow as the outlet boundary

condition. The steady-state boundary conditions at the ith outlet are formulated as follows:

h
BCoutlet = Qouri (10)
where Q};ﬁg ; 1s the mean outlet CBF at hyperemia stat.
3.3 3D CFD simulation

To simulate the hemodynamics of patient-specific coronary arteries, we solve the
incompressible Newtonian Navier-Stokes equations to calculate flow velocity and pressure
distribution within the coronary artery. The CFD simulation in this study is conducted under
steady-state flow conditions. This modeling choice aligns with the invasive IMR
measurement. IMR is defined as the product of distal coronary pressure (Pd) and the mean
transit time (Tmn) of blood flow. Specifically, Pd represents the average pressure over several
cardiac cycles rather than an instantaneous pressure waveform. Tmn refers to the average time
required for saline to travel from the coronary ostium to the distal measurement site, reflecting
the overall behavior of blood flow over time instead of capturing instantaneous fluctuations in
flow velocity. Given that both Pd and Tmn are time-averaged parameters, using steady-state
CFD for IMRct computation is a consistent and appropriate modeling choice. These equations

are defined as follows:

§%+(G-vﬁL:—%Vp+vvﬁi (11)
t

V-u=0 (12)
In this model, u and p represent the velocity and pressure, respectively, while v and p denote
the viscosity and density of blood, set at 0.0035 Pass and 1050 kg/m?, respectively. Blood is
considered an isotropic, uniform, and incompressible Newtonian fluid, with blood flow in the
vessel lumen idealized as laminar. We also assume that the vessel wall is rigid and adheres to a

non-slip condition. Following the CFD simulation, the IMRcrT is calculated as follows:



IMRct = Pd X Tmn (13)
where Pd is the mean distal pressure, Tmn is the mean transit time.
The CFD simulation in this study uses coronary geometry extracted from the 70% phase of the
cardiac cycle, which corresponds to mid-to-late diastole. CBF predominantly occurs during
diastole, as myocardial compression during systole significantly reduces coronary perfusion.
Therefore, employing coronary geometry from the diastolic phase more accurately reflects the
vessel configuration during the period of active coronary flow, thereby enhancing the
physiological relevance of IMRct computation.
After the CFD simulation, Tmn is computed through a segment-wise accumulation of local
transit times along the vessel centerline. For each vessel segment, the local transit time is

calculated as the ratio of segment volume to flow rate, and the total Tmn is expressed as:
(14)

where V; is the volume of segment i, and Q; is the corresponding flow rate obtained from

V.
— n _— n 1
Tmn =Y, T = i=1gQ,

steady-state CFD simulation. This formulation is consistent with the theoretical definition of
clinically measured Tmn, which reflects the mean time required for blood to traverse a vessel
segment. It is also consistent with our previously published framework!’, where the same
method is validated against invasive clinical measurements.
The IMRcT computation pipeline in this study is implemented based on automated algorithms,
covering key steps including coronary segmentation and 3D reconstruction, vascular
deformation extraction, blood flow estimation, boundary condition setting, CFD simulation,
and IMRcr calculation. The workflow is designed to minimize operator-related variability and
enhance consistency and reproducibility of the computation.
4. Validation of resting CBF
We can use the Tmn as a reliable indicator to verify CBF. The clinical invasive measurement
of IMR requires the use of a temperature/pressure wire to obtain the thermodilution curve
under maximal hyperemia. According to the thermodilution principle, the Tmn of room
temperature saline injected into the coronary artery is inversely correlated with the blood flow
velocity (F) measured by invasive methods. The formula for the thermodilution principle is as
follows:

Tmn = V/F (15)
where F is the CBF, V is the epicardial vascular volume between the injection site and the
sensor, and Tmn is the mean transit time of the injected indicator. For a given vessel, V

remains constant, so the inverse of the Tmn is directly proportional to the flow velocity.



Therefore, Tmn can serve as a proxy for blood flow. To validate the accuracy of the IMRct
model, we can compare the Tmn calculated by the model with the clinically measured Tmn.
This comparison allows us to evaluate the precision of the blood flow estimates produced by
the model.

We have validated the IMRct model's blood flow estimation by comparing the Tmn between
the model's calculations and invasive clinical measurements, using data from 216 blood
vessels analyzed in this study. As shown in Figure 2 of the main text, the correlation
coefficient between the Tmn calculated by the IMRct model and the invasive Tmn is 0.79,
with agreement limits ranging from -0.57 to 0.68. These results demonstrate both high
correlation and consistency, verifying the accuracy and reliability of the IMRct model's blood

flow estimation.



Supplementary Table 1. Consistency analysis of vessel counts and intervascular IMR values in patient measurements.

Number of vessels measured in a patient

1 141 (80.1)
2 30 (17.1)
3 5(2.8)
Consistency of IMR values in multi-vessel IMR assessments -

Concordance for IMR > 25 or <25 20 (57.1)
Discordance 15 (42.9)

The values are presented as n (%).

IMR: index of microcirculatory resistance.



Supplementary Table 2. Functional phenotyping of coronary physiology in the study population.

Category
FFR > 0.8

Normal (CFR>2.0, IMR<25)

Isolated IMR elevation (CFR>2.0, IMR>25)
Mixed Dysfunction (CFR<2.0, IMR>25)
Functional CMD (CFR<2.0, IMR<25)

FFR<0.8
IMR > 25
IMR <25
CFR <20

Overall (n=176)

123 (69.9%)
65 (36.9%)
41 (23.3%)
9 (5.1%)

8 (4.5%)

53 (30.1%)
15 (8.5%)
38 (21.6%)
27 (15.3%)

Female (n=61)
48 (78.7%)

25 (41.0%)

16 (26.2%)
5(8.2%)

2 (3.3%)

13 (21.3%)

4 (6.6%)

9 (14.8%)

9 (14.8%)

Male (n=115)
75 (65.2%)
40 (34.8%)
25 (21.7%)

4 (3.5%)

6 (5.2%)

40 (34.8%)
11 (9.6%)

29 (25.2%)
18 (15.7%)

The values are presented as n (%).

CFR: coronary flow reserve; CMD: coronary microvascular dysfunction; FFR: fractional flow reserve; IMR: index of microcirculatory resistance.



Supplementary Table 3. Number of vessels with IMRct and IMR above and below the threshold value of 25.

Per-vessel Per-patient

IMR > 25 IMR <25 IMR > 25 IMR <25
IMRcr> 25 59 25 53 22
IMRct <25 14 118 12 89

IMR: index of microcirculatory resistance; IMRcT: coronary computed tomography angiography-based IMR



Supplementary Table 4. Number of vessels with IMRct and IMR above or below 25 grouped by sex, hypertension, and diabetes status.

Female Male Hypertension No hypertension IDiabetes

No diabetes

IMRcT>25 (34 17 25 8 48 19 11 6 34

IMRcr<25 9 62 5 56 10 84 4 34 10

IMR >25 IMR <25[MR>25 IMR<25| IMR>25 IMR<25 | IMR>25 IMR<25 [IMR>25 IMR <25

11

57

IMR >25 IMR <25

25 14

4 61

IMR: index of microcirculatory resistance; IMRct: coronary computed tomography angiography-based IMR.



Supplementary Table 5. Diagnostic efficacy of IMRct for IMR >25 categorised by sex, hypertension, and diabetes status at the vessel level.

No.

IMR > 25 n (%)

Accuracy (%)

Sensitivity (%)

Specificity (%)

PPV (%)

NPV (%)

AUC

Female

Male
Hypertension
No hypertens
Diabetes

No diabetes

122
94
161
ion 55
112

104

43 (35.2%)
30 (31.9%)
58 (36.0%)
15 (27.2%)
44 (39.3%)

29 (27.9%)

78.7 (70.2 to 92.3)
86.2 (77.5 to 92.4)
82.0 (75.2 to 87.6)
81.8 (69.1 to 90.9)
81.3 (72.8 to 88.0)

82.7 (74.0 to 89.4)

79.1 (64.0 to 90.0)
83.3 (65.3 to 94.4)
82.8 (70.6 to 91.4)
73.3 (44.9 t0 92.2)
77.3 (62.2 to 88.5)

86.2 (68.3 t0 96.1)

78.5 (67.8 to 87.0)
87.5 (76.8 to 94.4)
81.6 (72.7 to 88.5)
85.0 (70.2 to 94.3)
83.8 (72.9 t0 91.6)

81.3 (70.7 to 89.4)

66.7 (56.1 to 75.8)
75.8 (61.6 to 85.9)
71.6 (62.3 to 79.4)
64.7 (45.2 to 80.3)
75.6 (63.7 to 84.5)

64.1 (52.1 to 74.5)

87.3 (79.2 t0 92.6)
91.8 (83.3 t0 96.2)
89.4 (82.6 t0 93.7)
89.5 (78.4 t0 95.2)
85.1 (76.6 0 90.9)

93.9 (85.9 to 97.4)

0.79 (0.70 to 0.86)
0.85 (0.77 to 0.92)
0.82 (0.75 to 0.88)
0.79 (0.66 to 0.89)
0.81 (0.72 to 0.90)

0.84 (0.75 to 0.90)

The values are presented as % (95% confidence interval).

AUC: area under the receiver operating characteristic curve; IMR: index of microcirculatory resistance; IMRct: coronary computed tomography

angiography-based IMR; NPV: negative predictive value; PPV: positive predictive value.



Supplementary Table 6. Number of vessels with IMRct and IMR above or below 25 grouped by location: LAD, LCx, and RCA.

LAD LCX RCA

IMR > 25 IMR <25 IMR > 25 IMR <25 IMR > 25 IMR <25
IMRcr> 25 30 21 8 1 21 3
IMRcr <25 7 77 4 19 3 22

IMR: index of microcirculatory resistance; IMRcT: coronary computed tomography angiography-based IMR.LAD: left anterior descending

artery; LCX: left circumflex artery; RCA: right coronary artery.



Supplementary Table 7. Diagnostic efficacy of IMRcr at the vessel level for IMR >25 in the LAD, LCx, and RCA.

No. IMR >25n (%) Accuracy Sensitivity Specificity

PPV NPV AUC

LAD

LCX

RCA

135 37(27.4%) 79.3 (714 t0 85.8) 81.1 (64.81092.0) 78.6 (64.8 to 92.0)

32 12 (37.5%) 84.4 (67.21094.7) 66.7(34.91090.1)  95.0 (75.1 to 99.9)

49 24 (49.0%) 87.8(75.21095.4) 87.5(67.7t097.3) 88.0 (68.8 to 97.5)

58.8 (48.710 68.3)  91.7(84.91095.6)  0.80 (0.72 to 0.86)

88.9(53.21098.3) 82.6(68.0t091.4)  0.81 (0.63 to 0.93)

87.5(70.6 10 95.3)  88.0 (71.6 t0 95.5)  0.88 (0.75 to 0.95)

The values are presented as % (95% confidence interval).

IMR: index of microcirculatory resistance; IMRcT: coronary computed tomography angiography-based IMR; LAD: left anterior descending

artery; LCX: left circumflex artery; RCA: right coronary artery.
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Supplementary Figure 1. Simplified schematic of the IMRcT computational pipeline.

The workflow begins with coronary segmentation and 3D reconstruction from CCTA images. Vascular deformation is extracted from CCTA
images to estimate hyperemic CBF, which is used for outlet boundary condition assignment. A patient-specific 3D model and defined boundary
conditions are then used to perform CFD simulation, from which IMRct is computed. CCTA: coronary computed tomography angiography;

CFD: computational fluid dynamics; CBF: coronary blood flow; IMRcr = CCTA-based index of microcirculatory resistance.
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Supplementary Figure 2. Workflow diagram of the IMRct model.
A For each patient, the IMRcr computational model takes CCTA images as input and outputs the IMRcT value to detect coronary microcirculatory
dysfunction. B By applying the concept of inverse problem solving, the coronary blood flow is implicitly derived based on the physical constraint
relationship between blood flow and vascular deformation. CCTA: coronary computed tomography angiography; IMRct: CCTA-based index of

microcirculatory resistance.
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Supplementary Figure 3. Study flowchart.
CCTA: coronary computed tomography angiography. IMRcr: CCTA-based index of

microcirculatory resistance.
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Supplementary Figure 4. Examples of IMRcT computations for case 42, wherein all three coronary vessels exhibited concordant IMR values.

In A to C, the images are arranged from left to right as follows: the CCTA volume-rendered image, IMRct computation result, CAG image, and
invasive functional examinations. In the third column, invasive IMR measurements were adjusted according to Yong’s formula when the FFR was
<0.80. CAG: coronary angiography; CCTA: coronary computed tomography angiography; FFR: fractional flow reserve; IMR: index of

microcirculatory resistance; IMRcr: CCTA-based index of microcirculatory resistance.
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Supplementary Figure 5. Examples of IMRcr computations for case 128, wherein all three coronary vessels exhibited discordant IMR values.

In A to C, the images are arranged from left to right as follows: the CCTA volume-rendered image, IMRct computation result, CAG image, and
invasive functional examinations. In the third column, invasive IMR measurements were adjusted according to Yong’s formula when the FFR was
<0.80. CAG: coronary angiography; CCTA: coronary computed tomography angiography; FFR: fractional flow reserve; IMR: index of

microcirculatory resistance; IMRct: CCTA-based index of microcirculatory resistance.
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Supplementary Figure 6. Passing-Bablok regression analysis between IMRcr and invasive
IMR measurements.

The solid line represents the regression line (IMR =-3.02 + 1.14 x IMRcr), with 95%
confidence bands shaded. A dashed line indicates the line of identity (y = x). Regression
parameters: intercept =—3.02 (95% CI: —=5.91 to —0.59); slope = 1.14 (95% CI: 1.03—1.28).
IMR: index of microcirculatory resistance; IMRct: CCTA-based index of microcirculatory

resistance.
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Supplementary Figure 7. Examples of IMRct computation under different physiological
scenarios.

In A to D, the images are arranged from left to right as follows: the CCTA volume-rendered
image, IMRcr computation result, CAG image, and invasive functional examinations. In the
third column, invasive IMR measurements were adjusted according to Yong’s formula when
the FFR was <0.80. CAG: coronary angiography; CCTA: coronary computed tomography
angiography; FFR: fractional flow reserve; IMR: index of microcirculatory resistance; IMRcr:

CCTA-based index of microcirculatory resistance.
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Supplementary Figure 8. Decision curve analysis of the IMRct-based predictive model.

A: Decision curve analysis demonstrates the clinical utility of the IMRcr-based predictive model (Model 1). The x-axis represents the threshold
probability for classifying patients as high risk (range: 0 to 1), and the y-axis shows the corresponding net benefit. Solid blue line: net benefit of
Model 1; light gray dashed line: net benefit assuming all patients are classified as high risk (“All”); dark gray solid line: net benefit assuming no
patients are classified as high risk (“None”). B: Model performance across varying cost:benefit ratios (range: 1:100 to 100:1). The x-axis indicates
the cost:benefit ratio, and the y-axis shows the number of high-risk patients per 1000 individuals. Solid red line: total number of patients
classified as high risk; dashed blue line: number of high-risk patients who experienced an event. IMRct: CCTA-based index of microcirculatory

resistance.



