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BACKGROUND: Despite its high prevalence and major prognostic implications, coronary microvascular disease 
(CMD) is frequently underdiagnosed owing to the complexity and invasiveness of current diagnostic procedures. 

AIMS: This study aimed to introduce and validate the usefulness of a  non-invasive index of microcirculatory 
resistance (IMR) derived from coronary computed tomography angiography (CCTA), called IMRCT, for accurate 
diagnosis of CMD.

METHODS: This retrospective cohort study comprised consecutive patients referred for invasive coronary functional 
assessments who underwent CCTA within the 30 days preceding an invasive evaluation between January 2022 and 
March 2024. IMRCT was calculated by blinded evaluators and compared against invasively determined IMR, with 
IMR values ≥25 indicating CMD, to assess its diagnostic performance.

RESULTS: A  total of 176 patients (216 vessels) were included in the analysis. IMRCT showed good correlation 
with invasively measured IMR, both at the vessel level (r=0.71, 95% confidence interval [CI]: 0.62-0.76; p<0.001) 
and the patient level (r=0.72, 95% CI: 0.64-0.78; p<0.001). At the vessel level, diagnostic accuracy, sensitivity, 
specificity, and area under the curve were 81.9%, 80.8%, 82.5%, and 0.82, respectively; corresponding values at 
the patient level were 80.7%, 81.5%, 80.2%, and 0.81. In patients with non-obstructive coronary artery disease 
defined by CCTA stenosis <50%, coronary angiogram stenosis <50%, or fractional flow reserve >0.8, IMRCT 
reduced underdiagnosis rates from 38.8%, 35.3%, and 36.3% to 4.5%, 5.9%, and 5.6%, respectively.

CONCLUSIONS: IMRCT serves as a valuable complement to current diagnostic approaches, addressing their limitations 
and offering a promising alternative for the diagnosis of CMD, with the potential to significantly reduce misdiagnosis 
rates. 
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Coronary microvascular disease (CMD) represents 
a clinical condition of myocardial ischaemia resulting 
from structural and/or functional changes in the 

coronary microcirculation1. Since the pioneering report 
by Likoff et al on myocardial ischaemia caused by non-
obstructive coronary artery disease (CAD)2, the diagnostic 
challenges of CMD have become increasingly recognised. 
Recent studies have demonstrated that up to 60.7% of 
patients with positive stress tests but non-obstructive CAD 
have underlying CMD when assessed by the invasive index 
of microcirculatory resistance (IMR)3, highlighting a critical 
gap in current diagnostic approaches.

Unlike obstructive CAD, which is readily identified 
through anatomical imaging, CMD remains underdiagnosed 
because of the lack of reliable non-invasive tools4. Non-
invasive functional tests, including stress echocardiography, 
positron emission tomography (PET), and cardiac magnetic 
resonance imaging (MRI), face significant limitations in 
the comprehensive assessment of coronary microvascular 
disease5. Although PET provides quantitative measurements 
of myocardial blood flow, its widespread use is hindered 
by high cost and limited availability. Cardiac MRI, despite 
offering high spatial resolution, cannot definitively exclude the 
presence of multivessel epicardial disease. Furthermore, stress 
echocardiography exhibits operator-dependent variability 
when assessing coronary flow velocity reserve, which may 
affect the reproducibility and accuracy of the results.

Although invasive IMR measurements based on 
thermodilution techniques can effectively diagnose CMD6-8, 
their clinical adoption remains limited by procedural risks, 
costs, and the need for hyperaemic agents. This diagnostic 
dilemma highlights the urgent need for accurate, non-invasive 
alternatives to assess coronary microvascular function.

Coronary computed tomography angiography (CCTA) 
is increasingly recognised for its potential to evaluate 
microvascular dysfunction through combined anatomical 
and functional assessment. Recent evidence shows that 
structural CMD is associated with a  40% reduction in 
epicardial lumen volume compared to controls (p<0.001), 
with strong correlation to invasive microvascular resistance 
measurements (r=−0.59) and good diagnostic performance 
(area under the curve [AUC] 0.79)9. Significant progress has 
also been made in applying computational fluid dynamics 
(CFD) to non-invasive physiological assessment of the 
coronary circulation, further supporting the feasibility of this 
integrated approach10-12. Building on these advancements, 
we propose an optimised CCTA-based IMR (IMRCT) 
measurement method for microvascular evaluation using 
standard CCTA technology. This approach addresses key 
limitations of current diagnostic strategies by enabling 
comprehensive coronary assessment within a  single widely 
available imaging modality.

Editorial, see page e11

Methods
STUDY DESIGN AND POPULATION
The study population consisted of consecutive patients 
retrospectively selected from an academic medical centre 
between 1 January 2022 and 31 March 2024. The study 
received ethical approval from the medical ethics review 
committee (approval number: B KY2024173) and was 
conducted following the principles of the Declaration of 
Helsinki. Informed consent was waived by the institutional 
review board for this retrospective analysis of fully 
anonymised clinical data, which posed no risk to participants.

Patients who met both of the following criteria were 
included: (1) successful completion of invasive intracoronary 
functional assessment for suspected myocardial ischaemia, and 
(2) availability of CCTA imaging performed within 30  days 
preceding the invasive procedure. Patients were excluded if 
they had (1) acute myocardial infarction, (2) incomplete or 
poor-quality image data, or (3) a history of previous coronary 
stent implantation or coronary artery bypass grafting.

CCTA IMAGING ACQUISITION
The CCTA protocol adhered to the Society of Cardiovascular 
Computed Tomography 2021 guidelines13, using retrospective 
gating tailored to patient-specific factors such as weight and 
heart rate/rhythm (voltage 80-120 kV; current 100-350 mA). 
Imaging covered the coronary arteries, left ventricle, and 
proximal ascending aorta, achieving optimal resolution and 
speed with a 0.25 s gantry rotation and 0.6 mm collimation. 
High-concentration iodine contrast (50-55 mL; 350-
370  mg I/mL) was injected at 5.5-6.0 mL/s, optimised for 
peak enhancement. Slice thickness was set to 0.6 mm; the 
Bv45 kernel and Advanced Modeled Iterative Reconstruction 
(ADMIRE [Siemens Healthineers]) algorithm were used for 
noise reduction and artefact minimisation, respectively. 
CCTA was performed using a second-generation dual-source 
computed tomography (CT) system (SOMATOM Definition 
Flash [Siemens Healthineers]).

Impact on daily practice
This study addresses the unmet need for a  reliable, non-
invasive diagnostic tool for coronary microvascular 
disease (CMD) by establishing the clinical utility of 
a  coronary computed tomography angiography-based 
index of microcirculatory resistance through advanced 
image-reconstruction technology. The method’s simplicity 
and diagnostic accuracy enhance early CMD detection 
rates while reducing misdiagnosis, enabling tailored 
microvascular-targeted therapies. This advancement 
optimises patient outcomes and refines CMD management 
strategies by integrating seamlessly into routine 
cardiovascular imaging workflows.

Abbreviations
CAD	 coronary artery disease

CCTA	� coronary computed tomography 
angiography

CMD	 coronary microvascular disease

FFR	 fractional flow reserve

IMR	 index of microcirculatory resistance

IMRCT	� CCTA-based index of microcirculatory 
resistance
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INTRACORONARY FUNCTIONAL ASSESSMENT
Coronary angiography was performed using Innova IGS 5 
(GE HealthCare). Intracoronary functional measurements 
were obtained using a  non-side hole catheter (6-7 Fr) and 
a  PressureWire X Guidewire (C12009 [Abbott Medical]) 
equipped with a pressure and temperature sensor, along with 
a  RadiAnalyzer Xpress (St. Jude Medical). The procedures 
were conducted using established protocols14.

Before the functional test, 50-200 μg of nitroglycerine 
was injected. Resting and hyperaemic curves were obtained 
using three 3 mL saline injections; if the transit time varied 
by >30%, additional injections were administered until 
stable measurements were obtained. Maximal hyperaemia 
was maintained by the continuous infusion of adenosine 
triphosphate (140-180 μg/kg/min) via a peripheral vein, with 
simultaneous pressure monitoring. The fractional flow reserve 
(FFR) was determined as the ratio of distal coronary pressure 
to aortic pressure during hyperaemia. Coronary flow reserve 
(CFR) was calculated as the ratio of the mean transit time 
(Tmn) at rest to the mean transit time during hyperaemia. 
The IMR was determined as the product of distal coronary 
pressure and the hyperaemic mean transit time. An FFR ≤0.80, 
a  CFR <2.0, and an IMR ≥25 were considered abnormal15. 
When FFR was ≤0.80, the IMR values were corrected using 
Yong’s formula16.

ESTIMATION OF IMRCT BASED ON CCTA
The IMRCT calculation method was developed by the Health 
Information Intelligent Computing Laboratory at the School 
of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 
China (Figure 1, Supplementary Figure 1, Supplementary 

Figure 2). The lab received only CCTA and clinical data without 
the results of invasive measurements. The lab segmented and 
reconstructed the coronary arteries, while the clinical centre 
marked the positions on the reconstructed model based on 
invasive measurements from coronary angiography.

This method estimates hyperaemic coronary blood flow 
(CBF) directly from vascular deformation extracted from 
multiphase CCTA data. Specifically, vascular deformations 
for each segment were automatically extracted, and inverse 
problem-solving techniques were applied to implicitly derive 
CBF. These techniques were based on physical constraints 
governing the relationship between vascular deformation 
and coronary blood flow. Segment-specific constraints were 
enforced, enabling individualised estimation of CBF by 
ensuring appropriate application of constraints on vascular 
deformation within each segment.

The estimated hyperaemic CBF served as outlet boundary 
conditions for subsequent CFD simulations. CFD simulations 
were then performed on patient-specific coronary artery 
models, generating pressure and velocity fields. IMRCT values 
were calculated from these simulation results. In our prior 
study, we also systematically evaluated the impact of variations 
in outlet boundary conditions on IMRCT computation17.

The Tmn prediction and flow estimation algorithm was 
developed and validated in our previous study, using an 
independent derivation cohort17. In the present study, we 
applied this established algorithm to a new and independent 
external validation cohort. The estimated flow was used as 
the boundary condition for IMRCT calculation. Analysis time 
was <30 min/case. More details are provided in Supplementary 
Appendix 117-22.

Routine CCTA images Image segmentation Vascular deformation Blood flow estimation

3D coronary artery Mesh generation Boundary conditions IMRCT computation
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Figure 1. Overview of the workflow of the proposed IMRCT model. A) Input images of the IMRCT model. B) Segmentation 
of the multiphase CCTA image. C) Extraction of vascular deformation from the cross-sectional area. D) Coronary blood 
flow estimation based on vascular deformation. E) 3D model reconstruction of the diastolic coronary artery. F) Mesh 
generation of the 3D model. G) The setting of inlet and outlet boundary conditions in the CFD simulation. H) The results 
of IMRCT computation. 3D: three-dimensional; CCTA: coronary computed tomography angiography; CFD: computational 
fluid dynamics; IMR: index of microcirculatory resistance; IMRCT: CCTA-based IMR; Pd: distal pressure; Tmn: mean 
transit time
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STATISTICAL ANALYSIS
Shapiro-Wilk and Levene tests were used to assess the 
normality and homogeneity of variance in the dataset. 
Continuous variables are presented as the median and 
interquartile range (first quartile, third quartile). Categorical 
variables are presented as frequencies and percentages. 
Pearson and Spearman correlation coefficients evaluated 
the relationship between IMRCT and invasive IMR, while 
Bland-Altman analysis assessed agreement. Passing-Bablok 
regression quantified systematic bias, with the cumulative 
sum (CUSUM) control chart test confirming linearity. 
Diagnostic performance was analysed using receiver 
operating characteristic curves, with accuracy, sensitivity, 
specificity, positive predictive value, and negative predictive 
value calculated at patient and vessel levels. Decision curve 
analysis evaluated clinical utility by comparing the net benefit 
across risk thresholds. A  Sankey diagram was generated to 
illustrate diagnostic agreement patterns. McNemar’s test was 
used to compare classification differences, and intrapatient 
vessel variability was assessed using generalised estimating 
equations. At the patient level, the highest IMR or IMRCT 
value was used for analysis in cases of multiple vessel 
measurements. Statistical significance was set at p<0.05 
(two-tailed test). Analyses were performed using R software, 
version 4.3.2 (R Foundation for Statistical Computing) and 
MedCalc software, version 20.215 (MedCalc).

Results
BASELINE CLINICAL CHARACTERISTICS
The study reviewed 324 eligible cases, with 196 having 
complete examination records. Among these, 20 cases were 
excluded because of having either incomplete datasets or 
suboptimal image quality. Consequently, the final analytical 
sample comprised 176 cases (representing 216 vessels), which 
were subsequently submitted to the core laboratory for rigorous 
diagnostic efficacy validation (Supplementary Figure 3). 

Table 1 presents the baseline characteristics of the 
patients (average patient age 61.2±8.8 years; males 65.3%). 
The median interval between CCTA and invasive IMR 
measurements was 5 days (interquartile range 4-9 days), with 
no adverse events occurring between the two examinations.

Supplementary Table 1 presents the distribution of 
vessels assessed per patient. Among the 176 patients, only 
35 (19.9%) underwent IMR measurements in two or three 
vessels. Of these, 57.1% showed concordant IMR values 
(either all were above and equal to 25, or all were below 
25), while 42.9% demonstrated discordant measurements, 
revealing myocardial perfusion heterogeneity. Notably, 
complete three-vessel assessment was performed in just five 
patients, with three showing consistent IMR values and 
two exhibiting discordance (illustrated in Supplementary 
Figure 4 and Supplementary Figure 5, for cases of agreement 
and disagreement, respectively). This heterogeneity was 
particularly evident in non-obstructive CAD cases. Among 
123 patients with FFR >0.8, 41 (23.3% of the total cohort) 
showed isolated IMR elevation (CFR ≥2.0 and IMR ≥25), as 
detailed in Supplementary Table 2.

Table 2 shows the characteristics of the 216 vessels included 
in this study. Among these vessels, 73 (33.8%) had a positive 
IMR (median IMR 19.5; interquartile range 13.7-29.6). 

Notably, only 15 vessels (6.9%) with a positive IMR showed 
a corresponding positive FFR, while the remaining 58 vessels 
(26.8%) showed a negative FFR. In the CCTA and coronary 
angiography reports, 67 (31.0%) and 34 vessels (15.7%) 
exhibited <50% stenosis, respectively.

DIAGNOSTIC PERFORMANCE OF IMRCT FOR IDENTIFYING CMD
OVERALL DIAGNOSTIC PERFORMANCE
The predicted Tmn was validated against invasively measured 
Tmn in an independent cohort, showing a strong correlation 
(r=0.79; p<0.001) and minimal mean bias (0.05) in Bland-
Altman analysis (Figure 2). In our dataset, the optimal AUC 
value at both patient and vessel levels was achieved at an 
IMRCT threshold of 23.84. At the vessel level, this threshold 
yielded the following values: AUC 0.85 (95% confidence 
interval [CI]: 0.80-0.90), accuracy 81.0% (95% CI: 75.1-
86.0%), sensitivity 87.7% (95% CI: 77.9-94.2%), and 
specificity 77.6% (95% CI: 69.9-84.2%). The corresponding 
patient-level values were as follows: AUC 0.86 (95% CI: 0.80-
0.91), accuracy 80.1% (95% CI: 73.4-85.7%), sensitivity 
89.2% (95% CI: 79.1-95.6%), and specificity 74.8% (95% 
CI: 65.6-82.5%).

Table 1. Baseline characteristics of the study population.

Characteristics N=176

Age, yrs 61.2±8.8

Male 115 (65.3)

Body mass index, kg/m2 24.5±3.1

Diabetes mellitus 45 (25.6)

Hypertension 113 (64.2)

Current smoker 80 (45.5)

Presence of angina 158 (89.78)

eGFR, mL/min/1.73 m2 91.5 (78.1, 103.5)
(n=175*)

HbA1c, mmol/mol 5.8 (5.5, 6.5)
(n=154*)

Total cholesterol, mmol/L 4.2 (3.6, 5.3)

Low-density lipoprotein cholesterol, mmol/L 2.7±0.8

Left ventricular ejection fraction, % 65.0 (61.0, 69.0)
(n=169*)

Total calcification score 92.8 (5.6, 341.3)
(n=164*)

Interval between CCTA and invasive IMR 
measurement, days 5.0 (4.0, 9.0)

Number of patients with at least one vessel 
either >90% stenosed or occluded 26 (14.8)

Nitroglycerine, µg

50 25 (14.2)

51-100 146 (83.0)

101-200 5 (2.8)

Contrast agent, mL 80.0 (80.0, 110.0)

Values are n (%), mean±standard deviation, or median (interquartile range 
[Q1, Q3]). *Number of patients for whom continuous variables were 
calculated. CCTA: coronary computed tomography angiography; 
eGFR: estimated glomerular filtration rate; HbA1c: glycated haemoglobin; 
IMR: index of microcirculatory resistance; Q1: first quartile; Q3: third 
quartile
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However, the low specificity necessitated additional 
adjustments. To balance sensitivity and specificity while 
improving understanding, acceptance, decision-making, 
and result interpretation, we re-evaluated the IMRCT using 
a threshold of 25, consistent with the threshold for the IMR. At 
this threshold, IMRCT showed vessel-level accuracy, sensitivity, 
and specificity of 81.9% (95% CI: 76.2-86.8%), 80.8% 
(95% CI: 69.9-89.1%), and 82.5% (95% CI: 75.3-88.4%), 
respectively (Table 3). Similarly, at the patient level, the predictive 

accuracy, sensitivity, and specificity were 80.7% (95% CI: 
74.1-86.0%), 81.5% (95% CI: 70.0-90.1%), and 80.2% (95% 
CI: 71.5-87.1%), respectively (Table 3). With a  cutoff value of 
25, the vessel- and patient-level AUCs for predicting IMR ≥25 
were 0.82 (95% CI: 0.76-0.87) and 0.81 (95% CI: 0.74-0.86), 
respectively (Figure 3A, Figure 3B). Thus, a cutoff value of 25 for 
IMRCT increased specificity while preserving adequate sensitivity 
and was particularly beneficial in terms of clinical applicability, 
reliability, and user-friendliness. Interestingly, although this 
cutoff value did not yield the highest AUC, it demonstrated 
greater accuracy than a cutoff value of 23.84. Therefore, we set 
the IMRCT cutoff at 25 in our study. Detailed vessel- and patient-
level classifications are provided in Supplementary Table 3.

A notable linear correlation was observed between IMRCT 
and invasively measured IMR, with correlation coefficients of 
0.71 at the vessel level (95% CI: 0.62-0.76; p<0.001) and 0.72 
at the patient level (95% CI: 0.64-0.78; p<0.001), as shown 
in Figure 3C and Figure 3D. Passing-Bablok regression analysis 
between the IMRCT and the invasive IMR at the patient level 
(Supplementary Figure 6) yielded the following equation:

IMR=–3.02+1.14×IMRCT

indicating a  small systematic difference (intercept: –3.02, 95% 
CI: –5.90 to –0.59) and a proportional bias (slope: 1.144, 95% 
CI: 1.030 to 1.275). The CUSUM test for linearity (p=0.40) 
confirmed the appropriateness of the linear model. Bland-Altman 
analysis further demonstrated small mean biases of 0.78 (95% 
CI: –0.43 to 2.01) and 0.92 (95% CI: –0.45 to 2.29) at the 
vessel and patient levels, respectively (Figure 3E, Figure 3F). The 
Sankey diagram (Figure 4) illustrates the diagnostic performance 
of IMRCT, with correct classification in 81.9% of cases (59 
true positives and 118 true negatives) and discordant results in 

Table 2. Coronary artery characteristics.

Characteristics 216 vessels
Vessel

LM 0 (0)

LAD 135 (62.5)

LCx 32 (14.8)

RCA 49 (22.7)

TIMI flow grade

TIMI 3 205 (94.9)

TIMI 1 or TIMI 2 11 (5.1)

FFR 0.86 (0.80, 0.91)

IMR 19.5 (13.7, 29.6)

CFR 3.2 (2.3, 4.8)

IMRCT 21.7 (14.8, 28.6)

Diameter of stenosis based on CCTA, %

<50% 67 (31.0)

50-69% 92 (42.6)

70-90% 57 (26.4)

Diameter of stenosis based on CAG, %

<50% 34 (15.7)

50-69% 125 (57.9)

70-90% 57 (26.4)

Vessels with FFR >0.8 160 (74.1)

Vessels with IMR ≥25 73 (33.8)

Vessels with IMRCT ≥25 84 (38.9)

Vessels with FFR ≤0.8 and IMR ≥25 15 (6.9)

Vessels with FFR ≤0.8 and IMR <25 41 (19.0)

Vessels with FFR >0.8 and IMR ≥25 58 (26.8)

Vessels with FFR >0.8 and IMR <25 102 (47.2)

Values are presented as n (%) or median (interquartile range [Q1, Q3]). 
CAG: coronary angiography; CCTA: coronary computed tomography 
angiography; CFR: coronary flow reserve; FFR: fractional flow reserve; 
IMR: index of microcirculatory resistance; IMRCT: CCTA-based IMR; 
LAD: left anterior descending artery; LCx: left circumflex artery; LM: left 
main artery; Q1: first quartile; Q3: third quartile; RCA: right coronary 
artery; TIMI: Thrombolysis in Myocardial Infarction

Table 3. Diagnostic efficacy of IMRCT at vessel and patient levels for IMR ≥25.

No. IMR ≥25 Accuracy Sensitivity Specificity PPV NPV AUC

Vessel level 216 73 
(33.8)

81.9 
(76.2-86.8)

80.8 
(69.9-89.1)

82.5 
(75.3-88.4)

70.3 
(61.9-77.4)

89.4 
(84.0-93.1)

0.82 
(0.76-0.87)

Patient level 176 65 
(36.9)

80.7
(74.1-86.0)

81.5 
(70.0-90.1)

80.2 
(71.5-87.1)

70.7 
(62.0-78.1)

88.2 
(81.5-92.6)

0.81 
(0.74-0.86)

The values are presented as n (%) or % (95% confidence interval). AUC: area under the curve; IMR: index of microcirculatory resistance; IMRCT: coronary 
computed tomography angiography-based IMR; NPV: negative predictive value; PPV: positive predictive value 
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18.1% (25 false positives and 14 false negatives). The McNemar 
test revealed non-significant differences at both the vessel level 
(5.09%, 95% CI: –0.53% to 10.72%; p=0.108) and the patient 
level (5.68%, 95% CI: –0.76% to 12.12%; p=0.121).

Supplementary Figure 7 illustrates IMRCT computation 
under four physiological scenarios: FFR-positive and IMR-
positive, FFR-positive and IMR-negative, FFR-negative and 
IMR-positive, and FFR-negative and IMR-negative.

 
FUNCTIONAL PHENOTYPES AND SUBGROUP 
PERFORMANCE ANALYSES
The diagnostic performance of IMRCT was evaluated across 
key clinical and anatomical subgroups. Analysis of coronary 
physiology phenotypes (Supplementary Table 2) revealed four 
distinct patterns: normal microvascular function (CFR ≥2.0 
and IMR <25) in 65 cases (36.9%), isolated IMR elevation 
(CFR ≥2.0 and IMR ≥25) in 41 cases (23.3%), mixed 
microvascular dysfunction (CFR <2.0 and IMR ≥25) in 
9 cases (5.1%), and functional CMD (CFR <2.0 and IMR 
<25) in 8 cases (4.5%). Sex-specific analysis showed isolated 
IMR elevation was more prevalent in females (26.2%, 16/61) 
than males (21.7%, 25/115), while functional CMD showed 
the opposite pattern (females 3.3% [2/61] vs males 5.2% 
[6/115]).

The diagnostic accuracy of IMRCT showed sex-specific 
differences, with higher performance in males (86.2%, 95% 
CI: 77.5-92.4%) compared to females (78.7%, 95% CI: 70.2-
92.3%). Accuracy remained comparable between hypertensive 
(82.0%) and non-hypertensive patients (81.8%), as well as 
between subgroups of diabetic (81.3%) and non-diabetic 
patients (82.7%) (Supplementary Table 4, Supplementary 
Table 5).

When analysed by coronary territory, IMRCT demonstrated 
the highest accuracy in the right coronary artery (RCA; 87.8%; 
95% CI: 75.2-95.4%), followed by the left circumflex (LCx; 
84.4%; 95% CI: 67.2-94.7%) and left anterior descending 
arteries (LAD; 79.3%; 95% CI: 71.4-85.8%), as detailed in 
Supplementary Table 6 and Supplementary Table 7.

EVALUATING THE POTENTIAL OF IMRCT IN REDUCING 
MISDIAGNOSIS ACROSS DIVERSE SUBGROUPS
Since only a few patients underwent IMR measurements in all 
three vessels, patient-level analysis may have underestimated 
diagnostic omissions. Therefore, we used vessel-level analysis 
to accurately assess undetected cases, aiming to gauge the 
potential of IMRCT in reducing diagnostic oversights in 
the absence of IMR assessment. In every scenario, the use 
of IMRCT reduced the initial misdiagnosis rate, as detailed 
in Table  4. Notably, in patients classified as having non-
obstructive CAD based on CCTA stenosis <50%, coronary 
angiography stenosis <50%, or FFR >0.8, the use of IMRCT 
significantly reduced the initial rates of underdiagnosis from 
38.8%, 35.3%, and 36.3% to 4.5%, 5.9%, and 5.6%, 
respectively.
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Figure 3. Per-vessel and per-patient diagnostic performance of 
IMRCT. A, B) AUC of IMRCT to IMR; (C, D) correlation of 
IMRCT to IMR; (E, F) Bland-Altman plots of IMRCT and 
IMR. AUC: area under the curve; IMR: index of 
microcirculatory resistance; IMRCT: coronary computed 
tomography angiography-based IMR; SD: standard deviation
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Figure 4. Sankey diagram of diagnostic agreement between 
IMRCT and IMR for CMD assessment. The Sankey diagram 
illustrates the counts and proportions of agreement and 
disagreement between IMRCT and IMR classifications. Each 
coloured segment corresponds to a specific category, with its 
width indicating the number of cases. The transitions 
between categories highlight patterns of diagnostic 
misclassification and provide insights into the performance 
of both methods. CMD: coronary microvascular disease; 
IMR: index of microcirculatory resistance; IMRCT: coronary 
computed tomography angiography-based IMR
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DECISION CURVE ANALYSIS FOR CLINICAL UTILITY 
ASSESSMENT
Decision curve analysis of the IMRCT-based predictive model 
(Supplementary Figure 8) demonstrated its superior clinical 
utility, with the model’s net benefit (Supplementary Figure 8A) 
nearly consistently exceeding both the “treat all” and “treat 
none” strategies. The model maintained robust performance 
across varying clinical scenarios, as shown in Supplementary 
Figure 8B where the number of true high-risk patients (dashed 
blue line) declined more gradually than the total high-risk 
classifications (solid red line) with increasing cost-benefit 
ratios (range: 1:100 to 100:1), confirming its ability to 
preserve diagnostic accuracy under more stringent criteria 
while appropriately reducing unnecessary interventions.

Discussion
To our knowledge, this is the first CT angiography-based 
method for evaluating coronary microcirculation. The IMRCT 
demonstrated good correlation with invasively determined 
measurements at both the vessel (r=0.71, 95% CI: 0.62-0.76; 
p<0.001) and patient (r=0.72, 95% CI: 0.64-0.78; p<0.001) 
levels, achieving diagnostic accuracies of 81.9% and 80.7%, 
respectively. Thus, IMRCT represents a  reliable, non-invasive 
tool for diagnosing coronary microvascular disease. Given 
the widespread availability of CCTA, IMRCT holds significant 
clinical implications (Central illustration).

IMRCT CAN OVERCOME THE LIMITATIONS OF CURRENT 
FUNCTIONAL ASSESSMENTS FOR CMD
IMRCT analysis uses multiphase CCTA data from routine 
clinical scans with retrospective electrocardiogram gating, 
eliminating the need for additional scans. This approach 
allows the seamless integration of non-invasive IMRCT 
assessments into clinical practice while prioritising patient 
safety.

With sensitivities and specificities of approximately 80% 
in comparison with invasive IMR measurements, IMRCT 
may be suitable for broader clinical adoption. Our findings 
were systematically compared with established functional 
measurement techniques. A recent meta-analysis demonstrated 
that angiography-derived IMR achieved diagnostic 
parameters of 81% sensitivity, 80% specificity, and an AUC 
of 0.86823. Although IMRCT provides similar diagnostic 
accuracy, its non-invasive nature represents a distinct clinical 
advantage. An apparent discrepancy warrants discussion: 

while Passing-Bablok regression indicated systematic 
underestimation of invasive IMR by IMRCT (slope B=1.144) 
(Supplementary Figure 6), the Sankey diagram revealed a higher 
rate of false positives (11.6%) than false negatives (6.5%) 
(Figure 4). This paradox can be explained by fundamental 
differences between these analytical approaches.

First, the continuous nature of regression analysis captures 
absolute measurement differences across the full range of 
values, whereas classification-based analysis depends strictly 
on threshold-defined categories (IMR ≥25). Second, IMRCT 
exhibits greater variability near the diagnostic cutoff – likely 
due to limitations in CT spatial resolution and inherent 
haemodynamic fluctuations during measurement – resulting 
in more frequent misclassification of true-negative cases, 
despite overall lower absolute values. Notably, decision curve 
analysis confirmed that these technical discrepancies have 
minimal clinical impact (Supplementary Figure 8), as IMRCT 
demonstrated consistently superior net benefit across all risk 
thresholds. This suggests that most misclassifications occur in 
clinically ambiguous cases, where either diagnostic call would 
have little influence on clinical management.

Subgroup analyses revealed important patterns in IMRCT 
performance. While showing consistent accuracy across 
subgroups of patients with hypertension and diabetes, IMRCT 
demonstrated reduced diagnostic performance in females 
and in the left anterior descending artery (likely owing to 
its anatomical complexity24). Sex-specific analysis revealed 
females had a  higher prevalence of isolated IMR elevation 
(26.2% vs 21.7% in males) but lower rates of strictly defined 
functional CMD (CFR <2.0 and IMR <25; 3.3% vs 5.2%). 
These distinct sex-based patterns reflect well-established 
differences in microvascular pathophysiology, the underlying 
mechanisms of which warrant further investigation25-27.

We acknowledge that while IMRCT provides reliable 
resistance measurement, comprehensive CMD evaluation 
requires both resistance-based (IMR) and flow-based (CFR) 
metrics. Our data reveal important diagnostic discrepancies 
when these metrics are combined: 23.3% of patients exhibited 
isolated IMR elevation (CFR ≥2.0 with IMR ≥25), while 4.5% 
showed isolated CFR impairment (CFR <2.0 with IMR <25) 
(Supplementary Table 2). These patterns likely reflect distinct 
pathophysiological mechanisms – the former suggesting 
microvascular remodelling or focal resistance abnormalities 
and the latter indicating global flow impairment due to 
endothelial dysfunction or diffuse disease. This validation 

Table 4. Assessment of potential misdiagnosis and alterations post-IMRCT implementation across diverse scenarios.

Clinical scenarios (n) Vessels with IMR ≥25 Initial misdiagnosis, %
Vessels correctly 
identified by IMRCT

Post-IMRCT 
misdiagnosis, %

CCTA stenosis <50% (67) 26 38.8 23 4.5

CCTA stenosis ≥50% (149) 47 31.5 36 7.4

CAG stenosis <50% (34) 12 35.3 10 5.9

CAG stenosis ≥50% (182) 61 33.5 49 6.6

FFR >0.8 (160) 58 36.3 49 5.6

FFR ≤0.8 (56) 15 26.8 10 8.9

The miss rate refers to the proportion of IMR-positive cases within their respective subgroups. CAG: coronary angiography; CCTA: coronary computed 
tomography angiography; FFR: fractional flow reserve; IMR: index of microcirculatory resistance; IMRCT: CCTA-based IMR
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study was intentionally designed to evaluate IMRCT against 
invasive IMR, positioning it as a  complementary tool 
rather than a  complete substitute for existing diagnostics. 
The observed discrepancies between IMR and CFR 
measurements underscore why neither metric alone suffices 
for comprehensive CMD assessment. Our approach proves 
particularly valuable for the clinically relevant subgroup with 
isolated IMR elevation, though we recognise that patients 
with discordant CFR/IMR findings (e.g., preserved IMR with 
low CFR) represent a diagnostic gap for IMRCT in its current 
form.

While some evidence suggests better outcomes for 
patients with isolated IMR elevation compared to those 
with combined abnormalities, their long-term prognosis 
requires further study. Notably, our data show that 38% of 
vessels with FFR >0.8 had abnormal IMR but normal CFR, 
highlighting how IMRCT could detect early microvascular 
disease missed by flow-based assessments alone. Emerging 
CT-based CFR techniques may soon enable fully non-
invasive multimodal assessment when combined with 
IMRCT, potentially resolving these diagnostic discrepancies 
by capturing both resistance and flow components of CMD 
pathophysiology.

IMRCT CAN MITIGATE THE UNDERDIAGNOSIS OF CMD 
ACROSS DIVERSE CLINICAL SCENARIOS
CMD accounts for 28% to 43% of chest pain cases with 
non-obstructive CAD28 and shows a  comorbidity rate 
of 41%29. Vessels showing <50% stenosis on CCTA/
coronary angiography or FFR >0.8 are considered low risk 
and often not tested further. In our study, many of these 
vessels showed positive invasive IMR results, indicating 
missed CMD diagnoses, and IMRCT substantially reduced 
these missed diagnoses. Thus, IMRCT can decrease CMD 
underdiagnosis rates in non-obstructive CAD. Early diagnosis 
and tiered management of CMD can significantly improve 
angina symptoms and quality of life30. Since clinicians often 
tend to focus on major epicardial vessel lesions, potentially 
overlooking concurrent microvascular disease, IMRCT can help 
identify coexisting CMD in patients with obstructive CAD 
(CCTA/coronary angiography stenosis ≥50% or FFR ≤0.8).

IMRCT CAN YIELD NON-INVASIVE ASSESSMENTS OF ALL 
MAJOR CORONARY ARTERIES
To assess the overall microcirculatory condition of the 
myocardium, IMR measurements of all three major coronary 
arteries are necessary. In the 3V FFR-FRIENDS study31, among 
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patients undergoing three-vessel IMR evaluation, 59.1% had 
no CMD, while 23.7% had CMD in one vessel, 14.0% in two 
vessels, and 3.2% in all three vessels. Moreover, the incidence 
of CMD was similar across the LAD, LCx, and RCA32.

The 3V FFR-FRIENDS study31 enrolled patients with 
>30% stenosis in all three coronary arteries, but in real-
world clinical practice, patients often show a  combination 
of stenotic and non-stenotic vessels. Ethical concerns limit 
invasive examinations to stenotic or slow-flow vessels, 
often the LAD. In our study, we analysed 135 LAD, which 
constituted 62.5% of the total vessels measured, aligning with 
the Swedish CArdioPulmonary BioImage Study cohort’s33 
findings that the LAD had the highest prevalence of disease. 
However, we also found IMR-positive results in 32 LCx and 
49 RCA, indicating that CMD can affect vessels beyond the 
left anterior descending artery.

Furthermore, the inconsistencies in IMR measurements 
in multiple coronary vessels indicated heterogeneity in 
microvascular function across different myocardial territories, 
potentially due to factors like blood flow characteristics, 
vessel dimensions, the supplied myocardial mass, and 
other mechanisms that remain to be elucidated24,34. IMRCT 
overcomes this limitation by simultaneously assessing 
myocardial perfusion across all major coronary arteries, 
providing a practical solution for this issue.

Limitations
This study has several limitations. First, as a  retrospective, 
single-centre study focusing on stable CAD patients, our 
analysis may be subject to selection bias. The current 
study also lacks standardised documentation of Canadian 
Cardiovascular Society class and New York Heart Association 
Functional Class, which limits our ability to correlate symptom 
severity with IMRCT values. These gaps are being addressed in 
an ongoing multicentre prospective trial that is incorporating 
structured symptom assessment and hard clinical endpoints 
to fully define the clinical utility of IMRCT. Second, inherent 
limitations of CCTA include reduced accuracy in patients with 
arrhythmias, tachycardia, or extensive coronary calcification 
– challenges that may be mitigated by future technical 
advancements and imaging strategies. Third, while IMRCT 
reliably assesses hyperaemic microvascular resistance, it has 
inherent limitations in fully characterising CMD. Specifically, 
it cannot assess functional CMD manifestations or detect 
vasospastic components – since acetylcholine provocation 
testing was not performed – and requires complementary flow-
based metrics such as CFR for a  comprehensive evaluation. 
Emerging approaches like microvascular resistance reserve35 
may offer additional insights, particularly in patients with 
mixed disease phenotypes. However, current invasive protocols 
that integrate IMR, CFR, and vasomotor function testing 
remain the reference standard for a  complete physiological 
assessment of the coronary microcirculation. Fourth, IMRCT 
computation remains influenced by the accuracy of the outlet 
hyperaemic flow boundary conditions, and further efforts 
are needed to improve outlet flow estimation36. The vessel 
wall material parameters are currently based on fixed values 
derived from healthy subjects and are not personalised for 
individual patients, which may limit the accuracy of modelling 
vessel elasticity in specific cases. Additionally, the empirical 

relationship used to convert resting flow to hyperaemic flow 
is derived from population-level data and may not be fully 
applicable to all patient subgroups.

Conclusions
This study clarified the potential of IMRCT measurements for 
CMD. Advancements in image reconstruction can improve 
the spatial resolution of CCTA and enhance the accuracy of 
IMRCT, thereby facilitating early detection, precise assessment, 
and management of CMD.
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Supplementary Appendix 1. Methodology of IMRCT computation. 

1. Overview of the IMRCT model 

We propose a model designed to noninvasively compute the index of microcirculatory 

resistance (IMR) from coronary computed tomography angiography (CCTA), a promising 

technique for quantitatively assessing coronary microvascular dysfunction (CMD). The model 

directly estimates hyperemic coronary blood flow (CBF), which serves as the essential input 

for IMRCT computation. A simplified schematic of the overall computational pipeline is 

presented in Supplementary Figure 1, highlighting the modular workflow from CCTA image 

processing to final IMRCT output. A more detailed diagram of the modeling strategy is 

provided in Supplementary Figure 2, outlining the major computational steps, including 

vascular deformation extraction, CBF estimation through inverse modeling, and computational 

fluid dynamics (CFD) simulation. Briefly, the model extracts vascular deformations from 

multi-phase CCTA and applies inverse problem-solving to estimate hyperemic CBF based on 

physical constraints between deformation and flow. This approach allows for individualized 

estimation of CBF by ensuring the appropriate application of constraints on vascular 

deformation in each segment. The estimated CBF is then used to define outlet boundary 

conditions for patient-specific CFD simulation, from which pressure and velocity fields are 

computed to derive IMRCT. The total computation time is divided into three components: 

coronary segmentation and vascular deformation extraction (approximately 5 minutes), CBF 

estimation (approximately 5 minutes), and three-dimensional (3D) CFD simulation 

(approximately 20 minutes). 

2. Inverse problem solving of CBF 

2.1 Coronary segmentation 

The algorithm for coronary lumen segmentation is from our previous study18. First, this 

segmentation method locates the aorta by detecting a circle-like object in CCTA images via 

Hough transform. After that, it detects the location of the intersection between the aorta and 

the coronary artery (i.e. the root of coronary tree) by the region growing strategy. The location 

of the coronary root is considered within a circular region. The diameter of the circular region 

is 1.2 times larger than the radius of the aorta. Second, the image patch is obtained by using a 

3D window centered as the coronary root. Within this image patch, we apply U-net for 

detecting the region of the coronary artery and the dynamic programming algorithm for 

extracting the segment of the coronary centerline. Finally, a 3D window is moved along the 



 

 

direction of the detected centerline segment. The above detection procedure of coronary region 

and centerline is repeated until the entire coronary artery is segmented. We employ the above 

steps on multi-phase CCTA images to segment the coronary artery models at different phases. 

In addition, a standard truncation strategy is applied at the outlet of the first-generation branch 

of the main 3D coronary artery model, approximately five times the diameter from the 

bifurcation21. This method can reduce the impact of spatial resolution limitations of CCTA, 

thereby enhancing the coronary segmentation reliability.  

2.2 Vascular deformation extraction and constraint sampling 

After coronary segmentation, we extract vascular deformation by analyzing the dynamic 

changes in lumen dimensions throughout the cardiac cycle. We calculate the cross-sectional 

area at various points along the coronary centerline, focusing on changes in the lumen. For 

coronary CCTA images acquired at different phases, we extract and align the centerline across 

each phase using non-rigid registration techniques, with vascular bifurcation points serving as 

key landmarks. This alignment ensures accurate tracking of lumen changes at each point 

across different time phases. To ensure accuracy, we limit the analysis to vessels with 

diameters greater than 2 mm, as smaller vessels are more prone to measurement errors. We 

also implement an error control mechanism, applying smoothing and data fitting techniques to 

reduce noise and improve data reliability. This approach provides robust analysis of vessel 

deformation, which is crucial for accurate coronary flow assessment. 

This study acquires CCTA images using retrospective ECG gating and reconstructs the entire 

cardiac cycle into 10 evenly spaced phases. For a typical heart rate range of 60-75 beats per 

minute, this protocol provides a temporal resolution of approximately 80-100 milliseconds per 

phase. The IMRCT simulation requires the average blood flow as a boundary condition; 

therefore, this method aims to estimate the average blood flow over the cardiac cycle. In this 

approach, the amplitude of vessel deformation (i.e., the range between maximum and 

minimum cross-sectional area) serves as the primary feature. This metric is expected to reflect 

average flow while being relatively insensitive to instantaneous deformation details. Given 

this consideration, a sampling density of 10 phases is considered adequate to capture the 

essential deformation dynamics required for accurate flow estimation. 

Regarding the sampling interval and number of cross-sectional constraints for vascular 

deformation, we extract deformation data from multi-phase CCTA by sampling cross-sectional 

areas along the coronary artery centerline at regular intervals of approximately 2-3 mm. Since 

the major coronary arteries and their branches typically extend over several centimeters to 

about 10 cm, this approach yields dozens of cross sections per vessel segment. This spatial 



 

 

resolution effectively captures the spatial distribution of vascular deformation and enables 

robust inverse modeling. Moreover, the sampling density meets the constraint requirements of 

inverse modeling and supports stable and reliable estimation of CBF. 

To ensure modeling accuracy while considering the limitations of image resolution, vascular 

deformation and cross-sectional area constraints are applied only to vessel segments with 

diameters greater than 2 mm. Given the spatial resolution of coronary CTA (~0.3 mm), the 

corresponding cross-sectional area includes about 40-140 pixels, which is sufficient for 

quantifying area changes and applying physical constraints in inverse modeling. In contrast, 

for vessel segments with diameters smaller than 2 mm, direct cross-sectional analysis is not 

performed due to increased susceptibility to imaging artifacts and segmentation inaccuracies. 

Instead, blood flow in these small segments is inferred based on the principle of mass 

conservation and the estimated flow in adjacent, larger vessel segments. This approach enables 

CBF estimation across the entire coronary artery tree, facilitating IMRCT computation. 

2.3 Inverse estimation of resting coronary flow  

The concept of inverse problem solving provides the possibility to estimate CBF based on 

vascular deformation extracted from multi-phase CCTA. Solving an inverse problem requires 

establishing a physical relationship between known variables and the unknown solution 

variable. Vascular deformation is influenced by blood flow. Therefore, we can estimate blood 

flow by inversely solving for temporal deformation in the vascular cross-sectional area from 

multi-phase CCTA. Here, we assume the vessel wall is impermeable and the blood is an 

incompressible Newtonian fluid. Vascular deformation refers to changes in cross-sectional 

area. The centerline at the 0% cardiac phase is used as the baseline model for inverse problem 

solving. The hydrodynamic equations can express the physical relationship between vascular 

deformation and blood flow:  

         
∂Q

∂t
+

4

3

∂

z
(
Q2

S
) +

S

ρ

∂p

∂z
= Sf − N

Q

S
+

μ

ρ

∂2Q

∂z2
      (1) 

 
∂S

∂t
+

∂Q

∂z
=0 (2) 

 P(z, t) = P0(z) +
4

3
(k1e

k2r
0(z) + k3)(1 − √

S0(z)

S(z,t)
)     (3) 

where z is the blood vessel's centerline axial coordinate; Q is the flow rate; p is the pressure; t 

is the time; S is the cross-sectional area; ρ is the density of blood; f is the body force; P0 is the 

reference pressure; r0 is the reference radius; k1, k2, and k3 are material properties of elastic 

wall. We employ a nonlinear (Olufsen) constitutive material model in this study, with k1 = 2.00 

× 107 g∙s-2∙cm-1, k2 = -22.53 cm-1, and k3 = 8.65 × 105 g∙s-2∙cm-1. The choice of velocity profile 



 

 

determines the variable N20. These three mathematical equations describe the relationship 

between vascular deformation, CBF, and blood pressure. For the coronary artery model, the 

blood pressure at the coronary artery inlet and the vascular deformation across the entire 

coronary artery can be considered as known variables, while CBF is the unknown variable. We 

can apply the concept of solving inverse problems to implicitly derive the CBF. Specifically, 

we adjust the parameters of the lumpted parameter model to fit both the vascular deformation 

and blood pressure, thereby obtaining the target CBF, as shown in Supplementary Figure 2B.  

The numerical solution of this inverse problem for estimating CBF can utilize the zero-

dimensional lumped parameter model as a boundary condition17, as illustrated in 

Supplementary Figure 2. The coronary inlet pressure curve is regulated by adjusting the 

parameters within the heart, aorta, systemic circulation, and pulmonary modules. This curve 

can be calibrated using cuff-measured blood pressure prior to CCTA. By optimizing the 

lumped parameter model parameters, the simulation results align with the clinical observation 

data (vascular deformation and brachial cuff pressure), ultimately yielding the resting CBF. 

This approach avoids circular reasoning because the parameter adjustment does not rely on 

fitting the blood flow curve to reverse-predict blood flow; instead, it predicts blood flow by 

fitting vascular deformation and pressure data.  

 Using this method, we can determine the CBF for each vascular segment, including the total 

at the inlet and the flow at each outlet. Vascular segments are delineated based on the locations 

of coronary bifurcations. In cases of parameter discrepancies, the simulated annealing 

algorithm is employed to optimize these parameters. The least-squares error E quantifies the 

discrepancies between the vascular deformation and coronary inlet pressure relative to the 

ground truth, and is defined as follows: 

 EA = ∑ (N
n=1 Acal

n − AGT
n )2 (4) 

 EP = ∑ (K
k=1 Pcal

k − PGT
k )2 (5) 

In this analysis, EA represents the errors between the vascular deformation curve and the 

ground truth, while EP denotes the errors between the coronary inlet pressure and the ground 

truth. The variables n and k correspond to the sampling points on the vascular deformation and 

coronary inlet pressure, respectively. Furthermore, Acal
n  and Pcal

k  indicate the calculated 

cross-sectional area and coronary inlet pressure, with AGT
n  and PGT

k  representing the 

respective ground truths. 

It is important to note that the precision of vascular deformation extraction varies across 

different vascular segments due to the spatial resolution limitations of CCTA. The imaging 



 

 

quality of CCTA improves as the diameter of the vessels increases, resulting in the highest 

reliability in extracting vascular deformation in larger vessel segments. Therefore, to enhance 

the estimation of CBF, it is necessary to assign differential error weights, E, to various 

vascular segments. The coronary inlet vascular segment, which has the largest diameter, 

requires the highest error weights. This segment's blood flow reflects the total CBF across all 

downstream coronary segments, and the accuracy of this measurement is critical for 

determining the distribution of outlet blood flow. Moderate error weights are assigned to the 

main branch vascular segments, while smaller branch vessels receive lower weights. The total 

E is the cumulative sum of errors at all observation positions: 

 Etotal = ∑ wh
J
j=1 Ej

A + EP (6) 

In this model, wh represents the differential error weights assigned to each vascular segment, 

Ej
Aquantifies the vascular deformation error at various observation positions compared to the 

ground truth, and j denotes these observation positions. Additionally, EP represents the errors 

in the coronary inlet pressure relative to the ground truth.  

2.4 Hyperemic flow estimation 

Previous research has demonstrated that the relationship between hyperemic CBF and resting 

CBF follows a quadratic function19. This relationship was established based on population-

level data without explicit subgroup stratification, and is intended to provide a generally 

applicable estimation of hyperemic flow across patient populations. Using this function, we 

can adjust the total resting CBF to reflect maximal hyperemia. The total hyperemic CBF 

(Qtotal
hyp

) is expressed as follows: 

 Qtotal
hyp

= c0 + c1 × Qtotal
rest + c2 × (Qtotal

rest )2 (7) 

where c0, c1, and c2 are 0.10, 1.55 and -0.93. We allocate the total hyperemic CBF Qout,i
hyp

 at 

each outlet based on the proportional distribution of resting CBF, which is described as 

follows: 

 Qout,i
hyp

= Qtotal
hyp

×
Qout,i
rest

Qtotal
rest  (8) 

where Qout,i
hyp

 and Qtotal
hyp

 are mean blood flow.  

2.5 Vessel wall material parameters 

In this study, the material parameters k1, k2, and k3 are adopted from the nonlinear elastic 

vessel wall model proposed by Olufsen et al.22, with values of k1 = 2.00 × 10⁷ g∙s⁻²∙cm⁻¹, k2 = -

22.53 cm⁻¹, and k3 = 8.65 × 10⁵ g∙s⁻²∙cm⁻¹. These constants are empirically derived from vessel 

compliance data of healthy subjects and represent the average elastic properties of normal 



 

 

arteries. In our model, these parameters are applied as fixed constants to all patients’ normal 

vessel segments and do not incorporate patient-specific variations. We acknowledge this as a 

limitation of the current model, as patient-specific personalization of vessel elasticity in 

normal segments is not implemented. 

2.6 Handling of calcified segments 

Our method is applicable to patients with calcified lesions. In these cases, we adopt a selective 

constraint strategy to ensure modeling accuracy. Specifically, vascular deformation constraints 

are applied only to anatomically normal and elastically preserved vessel segments, while 

calcified plaque regions are explicitly excluded from such constraints. This selective approach 

prevents potential errors caused by insufficient deformation in calcified areas, while in the 

non-calcified regions, the vessels retain good elasticity, allowing for significant deformation 

and a more accurate reflection of dynamic blood flow changes. Moreover, we leverage the 

principle of flow conservation between vessel segments. Since blood flow in the coronary 

system is continuous, even if certain segments are not constrained due to calcification, their 

blood flow is still influenced by other normal vessel segments. Therefore, despite minimal 

deformation in calcified regions, we can accurately infer the blood flow in these areas using 

deformation data from upstream and downstream non-calcified segments, effectively 

compensating for the impact of insufficient deformation. Additionally, the coronary inlet 

segment typically experiences less calcification, and deformation in this segment is directly 

related to the total blood flow. As this segment reflects the total blood flow of all downstream 

coronary segments, deformation constraints applied here are critical for estimating overall 

blood flow. By assigning higher error weights and applying deformation constraints to these 

key inlet segments, we ensure accurate blood flow estimation, which is propagated to calcified 

regions through flow conservation. Ultimately, this strategy allows for the estimation of the 

CBF at the outlet (Qout,i
rest ). The blood flow at the inlet vascular segment constitutes the total 

CBF (Qtotal
rest ), where both Qout,i

rest  and Qtotal
rest  represent average blood flow rates.  

3. IMRCT computation 

3.1 Mesh generation 

The IMRCT computation process includes reconstructing the coronary 3D model, generating 

meshes, setting boundary conditions, and performing steady-state 3D CFD simulations, as 

illustrated in Supplementary Figure 2. To minimize computation time and cost, we focus 

solely on the target vessel's IMRCT in this study. A high-quality tetrahedral mesh is generated 

for the selected model. Based on our prior mesh sensitivity analysis, a refined mesh with 

approximately one million elements is sufficient for accurate CFD simulations of the coronary 



 

 

artery model21. 

3.2 Boundary condition 

During clinical IMR assessments, the coronary inlet pressure is typically equated to the mean 

aortic pressure (MAP). It is assumed that the difference between the MAP in the resting state 

and during hyperemia is negligible. Consequently, the steady-state inlet boundary condition 

(BCinlet) can be expressed as follows: 

 BCinlet = MAP = 0.4 × (SBP − DBP) + DBP (9) 

In this model, SBP and DBP denote the brachial systolic and diastolic blood pressures, 

respectively. The IMRCT computation uses the mean outlet blood flow as the outlet boundary 

condition. The steady-state boundary conditions at the ith outlet are formulated as follows: 

 BCoutlet = Qout,i
hyp

 (10) 

where Qout,i
hyp

 is the mean outlet CBF at hyperemia stat.  

3.3 3D CFD simulation 

To simulate the hemodynamics of patient-specific coronary arteries, we solve the 

incompressible Newtonian Navier-Stokes equations to calculate flow velocity and pressure 

distribution within the coronary artery. The CFD simulation in this study is conducted under 

steady-state flow conditions. This modeling choice aligns with the invasive IMR 

measurement. IMR is defined as the product of distal coronary pressure (Pd) and the mean 

transit time (Tmn) of blood flow. Specifically, Pd represents the average pressure over several 

cardiac cycles rather than an instantaneous pressure waveform. Tmn refers to the average time 

required for saline to travel from the coronary ostium to the distal measurement site, reflecting 

the overall behavior of blood flow over time instead of capturing instantaneous fluctuations in 

flow velocity. Given that both Pd and Tmn are time-averaged parameters, using steady-state 

CFD for IMRCT computation is a consistent and appropriate modeling choice. These equations 

are defined as follows: 
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In this model, u and p represent the velocity and pressure, respectively, while v and ρ denote 

the viscosity and density of blood, set at 0.0035 Pa•s and 1050 kg/m3, respectively. Blood is 

considered an isotropic, uniform, and incompressible Newtonian fluid, with blood flow in the 

vessel lumen idealized as laminar. We also assume that the vessel wall is rigid and adheres to a 

non-slip condition. Following the CFD simulation, the IMRCT is calculated as follows: 



 

 

 IMRCT = Pd × Tmn (13) 

where Pd is the mean distal pressure, Tmn is the mean transit time. 

The CFD simulation in this study uses coronary geometry extracted from the 70% phase of the 

cardiac cycle, which corresponds to mid-to-late diastole. CBF predominantly occurs during 

diastole, as myocardial compression during systole significantly reduces coronary perfusion. 

Therefore, employing coronary geometry from the diastolic phase more accurately reflects the 

vessel configuration during the period of active coronary flow, thereby enhancing the 

physiological relevance of IMRCT computation. 

After the CFD simulation, Tmn is computed through a segment-wise accumulation of local 

transit times along the vessel centerline. For each vessel segment, the local transit time is 

calculated as the ratio of segment volume to flow rate, and the total Tmn is expressed as: 

 Tmn = ∑ Ti
n
i=1 = ∑

Vi

Qi

n
i=1  (14) 

where Vi is the volume of segment i, and Qi is the corresponding flow rate obtained from 

steady-state CFD simulation. This formulation is consistent with the theoretical definition of 

clinically measured Tmn, which reflects the mean time required for blood to traverse a vessel 

segment. It is also consistent with our previously published framework17, where the same 

method is validated against invasive clinical measurements. 

The IMRCT computation pipeline in this study is implemented based on automated algorithms, 

covering key steps including coronary segmentation and 3D reconstruction, vascular 

deformation extraction, blood flow estimation, boundary condition setting, CFD simulation, 

and IMRCT calculation. The workflow is designed to minimize operator-related variability and 

enhance consistency and reproducibility of the computation. 

4. Validation of resting CBF 

We can use the Tmn as a reliable indicator to verify CBF. The clinical invasive measurement 

of IMR requires the use of a temperature/pressure wire to obtain the thermodilution curve 

under maximal hyperemia. According to the thermodilution principle, the Tmn of room 

temperature saline injected into the coronary artery is inversely correlated with the blood flow 

velocity (F) measured by invasive methods. The formula for the thermodilution principle is as 

follows:  

 Tmn = V/F (15) 

where F is the CBF, V is the epicardial vascular volume between the injection site and the 

sensor, and Tmn is the mean transit time of the injected indicator. For a given vessel, V 

remains constant, so the inverse of the Tmn is directly proportional to the flow velocity. 



 

 

Therefore, Tmn can serve as a proxy for blood flow. To validate the accuracy of the IMRCT 

model, we can compare the Tmn calculated by the model with the clinically measured Tmn. 

This comparison allows us to evaluate the precision of the blood flow estimates produced by 

the model. 

We have validated the IMRCT model's blood flow estimation by comparing the Tmn between 

the model's calculations and invasive clinical measurements, using data from 216 blood 

vessels analyzed in this study. As shown in Figure 2 of the main text, the correlation 

coefficient between the Tmn calculated by the IMRCT model and the invasive Tmn is 0.79, 

with agreement limits ranging from -0.57 to 0.68. These results demonstrate both high 

correlation and consistency, verifying the accuracy and reliability of the IMRCT model's blood 

flow estimation.  



 

 

Supplementary Table 1. Consistency analysis of vessel counts and intervascular IMR values in patient measurements. 

Number of vessels measured in a patient  

1 141 (80.1) 

2 30 (17.1) 

3 5 (2.8) 

Consistency of IMR values in multi-vessel IMR assessments -  

Concordance for IMR ≥ 25 or <25 20 (57.1) 

Discordance 15 (42.9) 

The values are presented as n (%). 

IMR: index of microcirculatory resistance. 

  



 

 

Supplementary Table 2. Functional phenotyping of coronary physiology in the study population. 

Category Overall (n=176) Female (n=61) Male (n=115) 

FFR > 0.8 123 (69.9%) 48 (78.7%) 75 (65.2%) 

Normal (CFR≥2.0, IMR<25) 65 (36.9%) 25 (41.0%) 40 (34.8%) 

Isolated IMR elevation (CFR≥2.0, IMR≥25) 41 (23.3%) 16 (26.2%) 25 (21.7%) 

Mixed Dysfunction (CFR<2.0, IMR≥25) 9 (5.1%) 5 (8.2%) 4 (3.5%) 

Functional CMD (CFR<2.0, IMR<25) 8 (4.5%) 2 (3.3%) 6 (5.2%) 

FFR ≤ 0.8 53 (30.1%) 13 (21.3%) 40 (34.8%) 

IMR ≥ 25 15 (8.5%) 4 (6.6%) 11 (9.6%) 

IMR < 25 38 (21.6%) 9 (14.8%) 29 (25.2%) 

CFR < 2.0 27 (15.3%) 9 (14.8%) 18 (15.7%) 

The values are presented as n (%). 

CFR: coronary flow reserve; CMD: coronary microvascular dysfunction; FFR: fractional flow reserve; IMR: index of microcirculatory resistance.  



 

 

Supplementary Table 3. Number of vessels with IMRCT and IMR above and below the threshold value of 25. 

 Per-vessel Per-patient 

 IMR ≥ 25 IMR < 25 IMR ≥ 25 IMR < 25 

IMRCT ≥ 25 59 25 53 22 

IMRCT < 25 14 118 12 89 

IMR: index of microcirculatory resistance; IMRCT: coronary computed tomography angiography-based IMR 

.  



 

 

 

Supplementary Table 4. Number of vessels with IMRCT and IMR above or below 25 grouped by sex, hypertension, and diabetes status. 

 Female Male Hypertension No hypertension Diabetes No diabetes 

 IMR ≥ 25 IMR < 25 IMR ≥ 25 IMR < 25 IMR ≥ 25 IMR < 25 IMR ≥ 25 IMR < 25 IMR ≥ 25 IMR < 25 IMR ≥ 25 IMR < 25 

IMRCT ≥ 25 34 17 25 8 48 19 11 6 34 11 25 14 

IMRCT < 25 9 62 5 56 10 84 4 34 10 57 4 61 

IMR: index of microcirculatory resistance; IMRCT: coronary computed tomography angiography-based IMR.  



 

 

 

Supplementary Table 5. Diagnostic efficacy of IMRCT for IMR ≥25 categorised by sex, hypertension, and diabetes status at the vessel level. 

 No. IMR ≥ 25 n (%) Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) AUC 

Female 122 43 (35.2%) 78.7 (70.2 to 92.3) 79.1 (64.0 to 90.0) 78.5 (67.8 to 87.0) 66.7 (56.1 to 75.8) 87.3 (79.2 to 92.6) 0.79 (0.70 to 0.86) 

Male 94 30 (31.9%) 86.2 (77.5 to 92.4) 83.3 (65.3 to 94.4) 87.5 (76.8 to 94.4) 75.8 (61.6 to 85.9) 91.8 (83.3 to 96.2) 0.85 (0.77 to 0.92) 

Hypertension 161 58 (36.0%) 82.0 (75.2 to 87.6) 82.8 (70.6 to 91.4) 81.6 (72.7 to 88.5) 71.6 (62.3 to 79.4) 89.4 (82.6 to 93.7) 0.82 (0.75 to 0.88) 

No hypertension 55 15 (27.2%) 81.8 (69.1 to 90.9) 73.3 (44.9 to 92.2) 85.0 (70.2 to 94.3) 64.7 (45.2 to 80.3) 89.5 (78.4 to 95.2) 0.79 (0.66 to 0.89) 

Diabetes 112 44 (39.3%) 81.3 (72.8 to 88.0) 77.3 (62.2 to 88.5) 83.8 (72.9 to 91.6) 75.6 (63.7 to 84.5) 85.1 (76.6 to 90.9) 0.81 (0.72 to 0.90) 

No diabetes 104 29 (27.9%) 82.7 (74.0 to 89.4) 86.2 (68.3 to 96.1) 81.3 (70.7 to 89.4) 64.1 (52.1 to 74.5) 93.9 (85.9 to 97.4) 0.84 (0.75 to 0.90) 

The values are presented as % (95% confidence interval). 

AUC: area under the receiver operating characteristic curve; IMR: index of microcirculatory resistance; IMRCT: coronary computed tomography 

angiography-based IMR; NPV: negative predictive value; PPV: positive predictive value.  



 

 

Supplementary Table 6. Number of vessels with IMRCT and IMR above or below 25 grouped by location: LAD, LCx, and RCA. 

 LAD LCX RCA 

 IMR ≥ 25 IMR < 25 IMR ≥ 25 IMR < 25 IMR ≥ 25 IMR < 25 

IMRCT ≥ 25 30 21 8 1 21 3 

IMRCT < 25 7 77 4 19 3 22 

IMR: index of microcirculatory resistance; IMRCT: coronary computed tomography angiography-based IMR.LAD: left anterior descending 

artery; LCX: left circumflex artery; RCA: right coronary artery.  



 

 

Supplementary Table 7. Diagnostic efficacy of IMRCT at the vessel level for IMR ≥25 in the LAD, LCx, and RCA. 

 No. IMR ≥ 25 n (%) Accuracy Sensitivity Specificity PPV NPV AUC 

LAD 135 37 (27.4%) 79.3 (71.4 to 85.8) 81.1 (64.8 to 92.0) 78.6 (64.8 to 92.0) 58.8 (48.7 to 68.3) 91.7 (84.9 to 95.6) 0.80 (0.72 to 0.86) 

LCX 32 12 (37.5%) 84.4 (67.2 to 94.7) 66.7 (34.9 to 90.1) 95.0 (75.1 to 99.9) 88.9 (53.2 to 98.3) 82.6 (68.0 to 91.4) 0.81 (0.63 to 0.93) 

RCA 49 24 (49.0%) 87.8 (75.2 to 95.4) 87.5 (67.7 to 97.3) 88.0 (68.8 to 97.5) 87.5 (70.6 to 95.3) 88.0 (71.6 to 95.5) 0.88 (0.75 to 0.95) 

The values are presented as % (95% confidence interval). 

IMR: index of microcirculatory resistance; IMRCT: coronary computed tomography angiography-based IMR; LAD: left anterior descending 

artery; LCX: left circumflex artery; RCA: right coronary artery.  



 

 

 

 

Supplementary Figure 1. Simplified schematic of the IMRCT computational pipeline. 

The workflow begins with coronary segmentation and 3D reconstruction from CCTA images. Vascular deformation is extracted from CCTA 

images to estimate hyperemic CBF, which is used for outlet boundary condition assignment. A patient-specific 3D model and defined boundary 

conditions are then used to perform CFD simulation, from which IMRCT is computed. CCTA: coronary computed tomography angiography; 

CFD: computational fluid dynamics; CBF: coronary blood flow; IMRCT = CCTA-based index of microcirculatory resistance. 



 

 

 

Supplementary Figure 2. Workflow diagram of the IMRCT model.  

A For each patient, the IMRCT computational model takes CCTA images as input and outputs the IMRCT value to detect coronary microcirculatory 

dysfunction. B By applying the concept of inverse problem solving, the coronary blood flow is implicitly derived based on the physical constraint 

relationship between blood flow and vascular deformation. CCTA: coronary computed tomography angiography; IMRCT: CCTA-based index of 

microcirculatory resistance.



 

 

 

Supplementary Figure 3. Study flowchart.  

CCTA: coronary computed tomography angiography. IMRCT: CCTA-based index of 

microcirculatory resistance. 

2022.1.1-2024.3.31 

N = 324 patients underwent invasive physiological assessment 

n = 196 patients with CCTA performed within one month preceding invasive 

physiological evaluation 

Excluded n = 128 

No CCTA performed within one month prior to invasive 

physiological assessment 

Excluded n = 20 

Incomplete or poor-quality image data 

n = 176 patients (216 vessels) were used for final analysis 

CCTA images and clinical data were submitted for blind IMR
CT

 calculation at a 

core lab 

Core lab supplied IMR
CT

 values for diagnostic efficacy verification 



 

 

 

Supplementary Figure 4. Examples of IMRCT computations for case 42, wherein all three coronary vessels exhibited concordant IMR values.  

In A to C, the images are arranged from left to right as follows: the CCTA volume-rendered image, IMRCT computation result, CAG image, and 

invasive functional examinations. In the third column, invasive IMR measurements were adjusted according to Yong’s formula when the FFR was 

≤0.80. CAG: coronary angiography; CCTA: coronary computed tomography angiography; FFR: fractional flow reserve; IMR: index of 

microcirculatory resistance; IMRCT: CCTA-based index of microcirculatory resistance.  



 

 

 

Supplementary Figure 5. Examples of IMRCT computations for case 128, wherein all three coronary vessels exhibited discordant IMR values.  

In A to C, the images are arranged from left to right as follows: the CCTA volume-rendered image, IMRCT computation result, CAG image, and 

invasive functional examinations. In the third column, invasive IMR measurements were adjusted according to Yong’s formula when the FFR was 

≤0.80. CAG: coronary angiography; CCTA: coronary computed tomography angiography; FFR: fractional flow reserve; IMR: index of 

microcirculatory resistance; IMRCT: CCTA-based index of microcirculatory resistance.



 

 

 

 

Supplementary Figure 6. Passing-Bablok regression analysis between IMRCT and invasive 

IMR measurements.  

The solid line represents the regression line (IMR = –3.02 + 1.14 × IMRCT), with 95% 

confidence bands shaded. A dashed line indicates the line of identity (y = x). Regression 

parameters: intercept = –3.02 (95% CI: –5.91 to –0.59); slope = 1.14 (95% CI: 1.03–1.28). 

IMR: index of microcirculatory resistance; IMRCT: CCTA-based index of microcirculatory 

resistance.



 

 

 

 

Supplementary Figure 7. Examples of IMRCT computation under different physiological 

scenarios.  

In A to D, the images are arranged from left to right as follows: the CCTA volume-rendered 

image, IMRCT computation result, CAG image, and invasive functional examinations. In the 

third column, invasive IMR measurements were adjusted according to Yong’s formula when 

the FFR was ≤0.80. CAG: coronary angiography; CCTA: coronary computed tomography 

angiography; FFR: fractional flow reserve; IMR: index of microcirculatory resistance; IMRCT: 

CCTA-based index of microcirculatory resistance. 

 



 

 

 

 

Supplementary Figure 8. Decision curve analysis of the IMRCT-based predictive model.  

A: Decision curve analysis demonstrates the clinical utility of the IMRCT-based predictive model (Model 1). The x-axis represents the threshold 

probability for classifying patients as high risk (range: 0 to 1), and the y-axis shows the corresponding net benefit. Solid blue line: net benefit of 

Model 1; light gray dashed line: net benefit assuming all patients are classified as high risk (“All”); dark gray solid line: net benefit assuming no 

patients are classified as high risk (“None”). B: Model performance across varying cost:benefit ratios (range: 1:100 to 100:1). The x-axis indicates 

the cost:benefit ratio, and the y-axis shows the number of high-risk patients per 1000 individuals. Solid red line: total number of patients 

classified as high risk; dashed blue line: number of high-risk patients who experienced an event. IMRCT: CCTA-based index of microcirculatory 

resistance. 


